
CS 450: Operating Systems
Lecture 2: OS Structures

Spring 2014, J. Sasaki
Dept of Computer Science

Illinois Institute of Technology

1

What is an OS?

2

 “Operating System: The software that
supports a computer's basic functions, such as
scheduling tasks, executing applications, and
controlling peripherals.”

 — New Oxford American Dictionary

3

 “An operating system (OS) is a collection of
software that manages computer hardware
resources and provides common services for
computer programs.”

 — Wikipedia

4

5

 “An operating system acts as an intermediary
between the user of a computer and the
computer hardware. The purpose of an
operating system is to provide an environment
in which a user can execute programs in a
convenient and efficient manner.”

 — Dinosaur book, page 1

6

 "A Unix-like operating system is a software
collection of applications, libraries, and developer
tools, plus a program to allocate resources and talk
to the hardware, known as a kernel...

 “… GNU is typically used today with a kernel called
Linux. This combination is the GNU/Linux operating
system. GNU/Linux is used by millions, though
many call it "Linux" by mistake.

 — gnu.org homepage

 “Why do you call it GNU/Linux and not Linux?

 “Most operating system distributions based on
Linux as kernel are basically modified versions
of the GNU operating system. We began
developing GNU in 1984, years before Linus
Torvalds started to write his kernel.…

 — gnu.org

7

 “Should we always say “GNU/Linux” instead of
“Linux”?

 “Not always—only when you're talking about
the whole system. When you're referring
specifically to the kernel, you should call it
“Linux”, the name its developer chose.

 — gnu.org

8

Kernel vs Non-Kernel

9

• Why have a kernel?

• Manageability

• Separation of functions

• Protection and security

• Supervisor (“kernel”) mode vs user mode

• The kernel is everything that runs in kernel
mode?

10

• Kernel provides

• Basic interface between software and
hardware

• Lowest level of abstraction for resources

• Processes, virtual memory, device access,
communication

• Access kernel via system calls

11

• Process = Program + its memory + control info

• Address space, process's runtime stack

• Schedule CPU usage by process

• Multitasking (cf. uni-tasking/batch)

• Cooperative vs Preemptive

• Scheduler — policy vs mechanism

Process Management

12

Process Usage

• Process operations

• fork, exec, wait, exit

• Process communication

13

Process Communication

• IPC — inter-process communication

• Shared memory

• Fast, easy to use; cache coherence?

• Message passing

• Communicate, synchronize; cost?

• Remote procedure calls

14

Remote Procedure Calls

• Call client stub, locally

• Marshal parameters into a message, send
message to server

• Server stub un-marshals message into actual
arguments, calls server procedure

• … and reply

15

Kernel Organization

• Monolithic kernel

• Kernel resides in one address space
(basically)

• Intra-kernel operations via function call

• Fast; few system calls; direct access to
shared kernel data

• Drawbacks: Less robust? Buggier? Large
memory footprint?

16

Microkernel

• Restrict kernel to basic minimum

• Process support: Address spaces, thread
and process scheduling, minimal IPC

• Turn device drivers, file system, higher-level
IPC, shell into user-level code

• Nice separation of mechanism & policy, makes
protection easier

• Lots of message passing

17

http://en.wikipedia.org/wiki/File:OS-structure.svg

18

Hybrid Kernel

• Run more OS services in kernel mode than in a
microkernel, fewer than in a monolithic kernel

• More efficiency, give up some reliability
benefits

19

http://en.wikipedia.org/wiki/File:OS-structure2.svg

20

21

22

23

