
CS 450: Operating Systems
Lecture 5: More Threads

Spring 2014, J. Sasaki
Dept of Computer Science

Illinois Institute of Technology

1

1

The Story So Far….

2

2

Threads

• Threads have process context.

• Share resources, faster context switching,
simpler communication; can help organize
work of process.

• Processes don't share context.

• Require interprocess communication; longer
context switches. Harder to coordinate.
…

3

3

Using Threads

• Thread library provides API for creating & using
threads.

• POSIX: pthread_create, pthread_join()

• No specified implementation for POSIX
threads — can vary by OS …

• Threading module for python3

• Provides class Thread

4

4

Thread Data

5

5

Thread Data

• A created thread shares global data with its
creator.

• A created thread can have its own local data.

• In C, use local variables in the task function

• In python, add attributes to
threading.local().)

6

6

Lec05_thread1.c:

#include <pthread.h>! // pthread_...
#include <stdio.h>
#include <stdlib.h>! ! // exit

void *task(void *arg); // prototype

int gv = 1;! ! ! ! // Global variable

int main(void) {
! // retcode = 0 if thread creation succeeded
! pthread_t thd;
! int retcode;

! int my_x; // Main's local variable

7

7

! // Create thread and have it run task
! //
! retcode = pthread_create(&thd, NULL, task, NULL);
! if (retcode != 0) {
! ! fprintf(stderr,
! ! ! "Thread creation failed with code %d!!\n",
! ! ! retcode);
! ! exit(1);
! }

! // Set & print value of local & global variables
! //
! my_x = 1234;
! gv = 5678;
! printf("Main: &my_x = %-14p my_x = %d\n",
! ! &my_x, my_x);
! printf("Main: &gv = %-14p gv = %d\n",
! ! &gv, gv);

8

8

! // Wait for child to finish, then reprint local & global
! // variables (only global variable will have changed).
! //
! pthread_join(thd, NULL);
! printf("Main has waited:\n");
! printf("Main: &my_x = %-14p my_x = %d\n", &my_x, my_x);
! printf("Main: &gv = %-14p gv = %d\n", &gv, gv);
}

// Task run by thread; this one changes its local
// variable and prints its value
//
void *task(void *arg) {
! int my_x;!! // local variable
! my_x = 9012;

! printf("Child: &my_x = %-14p my_x = %d\n", &my_x, my_x);
! printf("Child: &gv = %-14p gv = %d\n", &gv, gv);

! return NULL;
}

9

9

Lec05_thread2.py:

import threading
from threading import Thread

gv = 1;! # Global variable

def main():
! my_x = 1234
! global gv
! gv = 5678
! print("Main: my_x = {}".format(my_x))
! print("Main: gv = {}".format(gv))

10

10

! thd = Thread(target=task, \
! ! args=(), \
! ! name="child")
! thd.start()
! thd.join()
! print("Main has waited")
! print("Main: my_x = {}".format(my_x))
! print("Main: gv = {}".format(gv))

end of main

11

11

Thread task stores local data in
threading.local()
#
def task():
! mydata = threading.local()
! mydata.x = 9012;

! print("Child: my_x = {}".format(mydata.x))
! global gv
! gv = 3456
! print("Child: gv = {}".format(gv))

12

12

Thread Implementation

13

13

Thread Control Block

• Similar to Process Control Block

• Doesn't include info shared by threads of the
process

• Address space

• List of open files

• Any CPU state common to all threads

• TCB switches faster than PCB switches

14

14

User & Kernel Threads

• User(-level) thread: Thread created by user-
level program (e.g. pthread_create).

• Runs in user mode

• Kernel thread: Thread of the kernel

• Analogous to process thread —
“Multithreaded kernel”

• Runs in supervisor mode

15

15

Who Manages Threads?

• Kernel(-supported) threads are managed
directly by OS

• Runs user code, in user mode

• User-level thread scheduled by kernel

• User thread analogous to a process

• Smart OS scheduler can try to run more
threads of program with many threads

16

16

User Threads

• User threads are managed by user-level library

• Kernel schedules your process

• Your process schedules your thread

• Much less/no special reliance on kernel

• Duplication of effort vs portability …

17

17

One-to-One Thread Model

• User-level thread created and run as a kernel-
supported thread

• Lots of concurrency, possibly parallelism

• But: Limit on # threads supported by kernel?

18

18

Many-to-One Model

• Multiple user-level
threads for 1 kernel
thread.

• Kernel thread runs
code that schedules
user threads

• Less concurrency,
parallelism

• Less popular

19

19

Many-to-Many Model

• Multiple kernel threads
used to run multiple
user threads

• Max # kernel threads
less of a problem

• More concurrency,
parallelism than many-
to-one

• Overhead, complexity

20

20

Two-Level Model

• Combines 1-to-1 and
many-to-many models

• Less popular

21

21

