CS 450: Operating Systems
Lecture 8: Mutual Exclusion
& Synchronization

s S

Spring 2014, J. Sasaki
Dept of Computer Science
lllinois Institute of Technology

Critical Sections

Critical Sections

e Say two threads have sections of code S, (in
one thread) and S, (in the other)...

... such that we cannot allow both S, and S,
to execute concurrently.

(All of S, must finish before starting S, and
vice versa.)

e Then S; and S, are “critical sections” of their
threads. Example: Our x++ and x--.

Mutual Exclusion

 The mutual exclusion (“mutex”) problem is
the problem of avoiding concurrent execution
of critical sections.

e \We can generalize to > two threads.

e WWe can generalize to > 1 piece of code in each

t
t
t

nread: Any identified piece of code in one
nread excludes any identified piece of code Iin

ne other thread.

 We can also have > 1 mutex problem.

Wait Your Turn

turn = .. // Either O or 1
// turn € {0,1} = the thread allowed to proceed

/* Thread 0 */
while(turn!=0);

X++;

4

turn=1;

/* Thread 1 */
while(turn!=1);

X-=;

turn=0;

Repeatedly Execute C.S.?

turn = .. // Either O or 1
// turn € {0,1} = the thread allowed to proceed
What if we repeatedly execute C.S.?

/* Thread 0 */ /* Thread 1 */
do { do {
CSo CS:

} ;/;hile (...) } ;\;hile (...)

Wait Your Turn Only If We
Both Want to Go

e Useanarray want[0..1]:want[i] true iff
thread i wants to access its C.S.

o |If both threads want their C.S's, then turn e
{0,1} = the thread allowed to go

e We can go into our C.S. if it's our turn or if (it's
not our turn but) the other thread doesn't want
its C.S.

« We must wait if want [other] = true and turn
US.

"
1S

O 00 N & U1 & W N -~

Peterson's Solution

Let us = our thread nbr (0 or 1)
Let other = the other thread nbr (1 or 0)

Q,
o)
=

want[us] = true;

turn = other;

while (want[other] && turn != us) ;
... Our Critical Section ...

want[us] = false;

} ;hile (..);

Observations

« Once turn = us, it stays that way until we set
turn = other.

e want [uUS] Is true between our lines 3...7.

e Only we set want[us]: The other thread
never changes our want[...] flag.

Mutual Exclusion ?

e Claim: During our line 6,
want[uUS] A (want[other] = turn=us)

* It holds instantaneously after our line 5.

e |If want[other] holds then the other thread is in
its lines 3...7.

e The other thread set turn=us at its line 4 and
turn can't change while we're at line ©.

10

Mutual Exclusion !

o If we're at our C.S. (line 6), then
want[US] A (want[other] = turn=us)

e |If the other thread is at its C.S. then
want[other] A (want[uS] = turn=other)

e For us both to be in our C.S.'s, we need

e want[0],want[1], want[0]=turn=1,
and want[1l]=turn=0

 These can't all be true simultaneously.

11

Progress & Bounded Waiting

» Peterson's solution guarantees progress: If no
thread is in its C.S. and a thread wants to enter
its C.S., then it can, eventually.

» Also guarantees bounded waiting: If a thread
Is blocked trying to enter its C.S., it cannot wait
forever as the other thread enters its C.S. over
and over.

12

Recall Original Wait Loop

x = 10;
ok to go

/* Thread 0 */
while (!ok to go) ;
ok_to _go = false;

X++;

ok to go = true;

true;

/* Thread 1 */
while (!ok to go)
ok to go = false;

X==;

ok to go = true;

°
4

13

Test-and-Set

The problem was with
while (!ok to go) ;
ok to go < false

Problem was caused by interleaving between the
loop and flag assignment

IBM 360 Test-and-set instruction
e TS reqgq, x // reg < x and x < 1

Later architectures: Compare and swap

14

Test-and-Set

e Let's paraphrase

e TestSet (flag) yields the value of flag;
it also sets flag < true

e Atomic operation; can't be interrupted
between copying old value of £lag and
setting flag to true.

15

Use Test-and-Set

¢ (Parent initializes busy + false;)

while (TestSet (busy)) ;
... Critical Section ...
busy < false;

¢ Doesn't guarantee bounded waiting

16

Use Test-and-Set

x = 10;
busy = false

/* Thread 0 */ /* Thread 1 */
while(testSet(busy)) ; while(testSet(busy)) ;
X++; X==3

busy = false; busy = false;

17

Semaphores

18

Higher-Level Synchronization

Primitive

 Spin looping $%; yield to OS instead?

« Semaphore primitive (Edsger W. Dijkstra)

* Railroad semaphore flags:
(thanks, Wikipedia).

 When you see the flag,
continue iff it's clear
(raise flag behind you, lower

Stop Clear

= &

it when you leave the protected area).

19

Binary Semaphore

e A binary semaphore has two states 0 & 1.

e If you want to enter the C.S., wait if the
semaphore is 0.

e Ifit's 1, decrease it to 0, do your C.S., and
then increase it to 1.

 Increasing the semaphore causes the
waiting thread to be awoken; it can enter
its C.S.

20

20

Counting Semaphore

e Counting semaphore s basically an integer plus
a queue. Once initialized, we can

e s.wait(): atomically,
1f (--s<0)
enter queue for s and block.
e s.signal(): atomically,
++s; 1f (queue not empty) remove

some process from queue and
awaken it

21

21

Wait, Signal, P V

e The original names for wait () and signal ()
are P() and v ().

P = prolaag = short for “probeer te verlagen”
Is Dutch for “try to reduce”.

e VV = verhogen is Dutch for “increase”

e Exist other names (acquire/release, down/up,
suspend/post, ...).

22

22

Value of Semaphore

* \We don't get to look at value of semaphore
(wouldn't necessarily help anyway).

e If s < 0, then |s| = nbr. processes blocked.

e If s = 0, then s = nbr. waits that can be done
before someone blocks.

e s (if = 0) is nbr. of resources that can be
obtained viawait ().

23

23

Mutex via Semaphores

e \We can solve the mutex problem using a binary
semaphore:

Semaphore s = 1;
/* Thread 0 */ /* Thread 1 */
s.wait(); s.wait();
... C.S. C.S. ...

s.signal(); s.signal();

24

24

Producer-Consumer Problem

25

25

The Producer-Consumer
Problem

o Archetypical problem in concurrency.
 Two processes and a buffer.

* Producer process repeatedly adds item to
buffer; consumer process repeatedly
removes item from buffer.

« Consumer must wait if buffer is empty;
producer must wait if buffer is full

26

26

Consumer Process

do {

Wait until buffer not empty;
Get item from buffer;
Use item;

while (..);

Use a semaphore to wait until buffer
not empty.

27

27

Consumer

e Parent:
Semaphore not empty = 0;
Buffer buf; // initially empty

e Consumer: (Waits until buffer nonempty)
not empty.wait();

item = buf.get item();
item.use();

28

28

Is buffer Thread-Safe?

e Can buffer routines be interleaved?

e If we try to concurrently/simultaneously
execute buf.get item() and
buf.add item(item), can the buffer get
broken?

29

29

If buffer Not Thread-Safe

e |f the buffer is not thread-safe, we need a
separate mutex semaphore for the buffer.

e Parent:
Semaphore not empty = 0;
Buffer buf; // initially empty
semaphore buf mutex = 0;

30

30

Consumer's buffer mutex

o Consumer:
not empty.wait();
buf mutex.wait();
item = buf.get item();

buf mutex.signal();

item.use();

31

31

What About Producer?

* Producer is symmetric; need a not full
semaphore initially true

e Parent:
Semaphore not empty = 0;
Semaphore not full = 1;

Buffer buf; // initially empty
semaphore buf mutex = 0;

32

32

Producer

e Producer: (Waits until buffer not full)
item = ..
not full.wait();
buf mutex.wait();

buf.add item();
buf mutex.signal();

33

33

Producer and Consumer
Unblock Each Other

* Once producer adds an item, it can do
non empty.signal(); to waken consumer if
necessary.

e« Once consumer removes an item, it can do
non full.signal(); to waken producer if
necessary.

34

34

Full Consumer Code

« Consumer:
not empty.wait();
buf mutex.wait();
item = buf.get item();
buf mutex.signal();

not full.signal();

item.use();

35

35

Full Producer Code

e Producer:
item = ..
not full.wait();
buf mutex.wait();
buf.add item(item);

buf mutex.signal();

not empty.signal();

36

36

Observations

 We can have multiple producers and
consumers sharing the same buffer.

« Why are Producer and Consumer so similar?

e Think of the producer as a consumer of
buffer holes.

37

37

Reader-Writer Problem

38

The Reader-Writer Problem

« The Reader-Writer problem studies a resource

with different categories of use that have different
exclusion needs.

e Database shared by reader and writer threads.
e Multiple threads can read concurrently.
e Writer threads can't write concurrently.
e If a writer is writing, no reader can read.

« Pedestrian crossing problem (pedestrians vs cars)

39

39

Reader-Writer Solution

e int read count = 0; // nbr readers

e semaphore RC mutex = 1;
// mutex for read count

e semaphore DB mutex = 1;
// mutex for database access

40

40

Writer Process

» Writers are straightforward:

do {
DB mutex.wait();
... perform write ...

DB mutex.signal();
} while(..);

41

41

Reader Process

e First reader has to wait for database.

« Other readers wait for first reader to get DB
(by waiting to update read count)

» Each finishing reader decreases read count
 Last finishing reader releases DB.

42

42

// Reader (embedded in do-while loop)

RC mutex.wait();

++read count;

if (read count == 1) {
DB mutex.wait();

} Updated Feb 12
RC mutex.signal(); /4

... read DB ...

RC mutex.wait();

--read_ count;

if (read count == 0) {
DB mutex.signal();

}

RC mutex.signal();

43

43

