Open Source OS’s — CS 450

Peter Chinetti
School of Electrical and
Computer Engineering
Ilinois Institute of Technology
Chicago, Illinois 60616
Email: peter@chinetti.me
A20265405

Abstract—An overview of three OSS OS’s (Open Source
Software Operating Systems): Linux, Minux and FreeBSD.

I. LINUX
A. Introduction

According to the kernel.org site: “Linux is a clone of the
operating system Unix, written from scratch by Linus Torvalds
with assistance from a loosely-knit team of hackers across the
Net” [[1]. Linux began life in 1991 as a college project by
Linux Torvalds: a Finnish student. In the broader computer
world at the time the GNU project was a kernel away from
having a UNIX clone. Work on that kernel has continued,
however a stable release is still forthcoming. Red Hat Inc., a
company selling Linux support, has grown into a $8.9 billion
dollar company and was added to the S&P 500 in 2009 [2].
As an aside, this paper was entirely written on an [Arch]
Linux machine using mostly open source software. According
to Bagozzi and Dholakia, “Since its first lines of code were
written by Linus Torvalds ..., Linux has become the best
known, most successful, and widely adopted OSS to date. [6]”

B. History

To discuss the history of Linux, we must first discuss the
history of the Free Software. All of the operating systems
discussed here are somewhat based off the original UNIX,
written by Dennis Richie and Ken Thompson while they
worked for Bell Labs circa 1969. It was (and is) a well
designed system of abstraction away from the base hardware
using a relatively straightforward interface. It was widely
used, however it remained the intellectual property of Bell.
This made it very expensive, and protected by licenses that
prohibited modification by the end users. Fast forward to
1984, when Richard Stallman (rms) was dissatisfied with
the encroachment of closed source, prohibitive software and
decided to personally take action. He resigned his job at MIT
(although he was allowed to keep his office) and started on
what would become the Free Software Foundation and the
GNU (a “recursive” acronym which stands for “GNU’s Not
Unix”) Project. In 1991, the year of the birth of Linux, many
of the tools required for a UNIX clone (a compiler, a shell
etc.) had been written by the FSF. The kernel (named HURD,
as in a herd of gnus), however, was (and still is) nowhere near
completion. Linus, therefore, took it upon himself to write a

free kernel. In some of his annotated emails from the beginning
of the project he writes: “I’'m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu) [3].”
Little did he know that people would jump on his kernel and
begin using it for their own. By “two years after Linus’ post,
there were 12000 Linux users. [4]”

C. Size

The Linux kernel now has 1229 commits a week (175.6 a
day) from 326 authors. The development work on it is huge.
It is easily one of the largest open source projects.

D. Maturity

Linux is a mature project, it has support for a number of
architectures and has performance comparable to other major
operating systems.

II. MINUX
A. Introduction

Minux is the system that directly inspired Linux. Its author,
Andrew Tanenbaum, was and is a professor of Computer
Science (specializing in operating system design) at the VU
University Amsterdam. In an email seemingly designed to
spark a flame war, he laid out his view that “Linux is
Obsolete.” In it, he argued that he “could go into a long story
here about the relative merits of the two designs, suffice it
to say that among the people who actually design operating
systems, the debate is essentially over. Microkernels have

Lt}

won.

B. History

Professor Tanenbaum wrote Minux as a proof of concept,
then hamstrung it with restrictive licensing. In 1987, he
released a book called “Operating System Concepts,” which
was lauded as being different because it was able to “not only
does it discuss all the principles in detail, but it also presents
and discusses the complete source code of a small UNIX-
like operating system called MINIX. By studying both the
principles and the source code of a real system, the reader
gets a far deeper understanding of how operating systems
really work [5].” Originally, the source code was distributed
with a license that prohibited modification and redistribution,
so people looking to improve the operating system had to

distribute patches rather than source. This is a labor-intensive
process, and hampered the spread of the system. Additionally,
MINUX had a cost. It cost something like $70 for a copy of the
source, which was significantly cheaper than other proprietary
options, but was still a limitation for students.

C. Size

MINUX is a small project, used in very few “production”
applications. It is tiny compared to almost every other kernel,
although it may have a larger install base than the GNU
project’s microkernel.

D. Maturity

Although MINUX has been under development for more
years than Linux, it has had fewer developers, and as a result
fewer “man-hours” invested into the project.

III. FREEBSD
A. Introduction

FreeBSD came out of the Berkeley Security Distribution
(BSD) project. BSD was developed by the Computer Systems
Research Group of the University of California, Berkeley
starting in 1977. BSD is the closest relative of UNIX, with
the initial releases being based directly on it. Eventually, the
UNIX copyright became a problem as the new owner asserted
their copyright. This slowed the uptake of (what eventually
became) FreeBSD.

B. History

FreeBSD is ancient. It began, (as stated above) in /977,
37 years ago. The project called “FreeBSD” started in 1993,
as patches on 385BSD. Eventually, it forked and released
code from 4.3BSD-Lite, 368BSD and FSF code in September
of 1993. The legal wrangling around BSD took its toll on
FreeBSD as well: forcing the developers to stop and re-
implement code to allow the legal issues to cease. A clean
version was published in January 1995. By 1996, FreeBSD
was replacing systems in big names like Hotmail and Yahoo!.
Eventually support for modern features like SMP and ELF
binaries was included.

C. Size

FreeBSD is the largest of the BSD family, with 77% of
the user base. However, the BSD project is still significantly
smaller than the Linux community. FreeBSD, however, has a
more business-friendly license than Linux and is used in some
proprietary devices and appliances. The single most obvious
contribution of FreeBSD to the commercial world is Mac OS
X, which is based on Darwin, which is based on FreeBSD.

D. Maturity

FreeBSD has an amazing history and is certainly mature.
FreeBSD’s developer base is smaller than Linux, but they have
managed to create a powerful, secure system.

IV. CONCLUSION

Linux is the largest free Operating System in the world
today, for technical and historical reasons. The author uses
it for his daily computing, and even had a job in a “Linux
Engineering” department last summer. The other OSS OSes
form a vital part of the community, with code moving across
projects (as is the case with FreeBSD), or serving asan
inspiration for others (as with MINUX). OSS OSes are a huge
part of the world today.

NOTE

This paper was written using the IEEE IETgX style found
here: IEEE - Manuscript Templates for Conference Proceed-
ngs

REFERENCES

[1]1 About Linux Kernel. kernel.org, 2013. Web.

[2] Tom McCallum, VP Investor Relations Quarterly Fact Sheet. Red Hat
Inc., North Carolina, 2013. Web.

Linus Torvalds LINUX’s History by Linus Torvalds. Carnegie Mellon
University, Pittsburgh PA,

[4] Introduction to Linux — History. {tldp.org, 2008. Web.

[S] Operating Systems - Design and Implementation. http://minix l.woodhull.
com/osdi2// 2008. Web.

Richard P. Bagozzi and Utpal M. Dholakia. Open Source Software
User Communities: A Study of Participation in Linux User Groups.
Management Science. Vol. 52, No. 7, Open Source Software (Jul., 2006).
pp. 1099-1115 Published by INFORMS Stable URL: |http://www.jstor.
org/stable/20110583 2008. Web.

3

—

[6

—_

PROBLEMS
A 1.15

Symmetric multiprocessing differs from asymmetric multi-
processing in that in SMP, there is no “controller” processor,
all processors are equals. This allows for resources to be more
efficiently utilized. A (the) difficulty with multiprocessor sys-
tems is synchronization of memory. However, multiprocessing
systems can be more responsive to many tasks, can be faster
if tasks can be paralleled, and it is generally cheaper to put
more cores/processors on a chip than it is to make a core/chip
go faster.

B. 1.16

Clusters are connected by networks which are about 3
orders of magnitude slower than the internal interconnects of
a computer. This means that total memory synchronization
cannot efficiently happen, and as such the cluster must find
cheaper, faster, less complete methods of synchronization to
provide a service.

C. 1.19

Interrupts exist to serve asynchronous needs. If something
changes in the environment of the computer (either a device
or even a sensor to the external world), it needs to be handled
promptly. Traps are mainly mean to branch into a section of
privileged code from user land code.

http://www.ieee.org/conferences_events/conferences/publishing/templates.html
http://www.ieee.org/conferences_events/conferences/publishing/templates.html
kernel.org
tldp.org
http://minix1.woodhull.com/osdi2/
http://minix1.woodhull.com/osdi2/
http://www.jstor.org/stable/20110583
http://www.jstor.org/stable/20110583

D. 1.20

1) With DMA, the CPU initializes the transfer.

2) The device interrupts the CPU only when the I/O is
complete.

3) The I/O process does not interfere directly unless the
memory spaces collide. Bus contention is a problem,
however.

E. 1.24

1) There is no real cache coherence problem in single
processor systems, just marking cache lines as dirty and
deciding when to write back to memory.

2) With Multiprocessors Systems, cache coherence be-
comes a big problem. There is hardware designed to
ensure cache coherence, however, it is slow.

3) Distributed systems make it unreasonable to synchronize
processor caches, however synchronization of higher
level caches is possible, done in software, and slow.

FE 217

Yes, that is why there are so many shells (t, c, bash, zsh,
etc.).

G. 218

Shared memory (no synchronization, full speed, maximum
possibility for conflict) and message passing (synchronized,
slower, less possibility for conflict).

H. 221

Microkernels can be more reliable. All interaction is done
through message passing, which allows components to be
removed, replaced and restarted without affecting one another.
That message passing slows the system.

1. 225

The Synthesis method is awesome. However, much like
other awesome things, such as fighter jets, the engineering
work needed to keep the system running and debugged may
easily eat the performance benefits of assembling in kernel.

	Linux
	Introduction
	History
	Size
	Maturity

	Minux
	Introduction
	History
	Size
	Maturity

	FreeBSD
	Introduction
	History
	Size
	Maturity

	Conclusion
	References
	1.15
	1.16
	1.19
	1.20
	1.24
	2.17
	2.18
	2.21
	2.25

