
Full Name:

CS 450 Spring 2010

Final Exam

May 5, 2010
¡Happy Cinco de Mayo!

Instructions:

• This exam is closed-book, closed-notes.

• Write your full name on the front, and make sure that your exam is not missing any sheets.

• Good luck!

Problem 1 (/15) :

Problem 2 (/9) :

Problem 3 (/9) :

Problem 4 (/9) :

Problem 5 (/9) :

Problem 6 (/4) :

Problem 7 (/4) :

TOTAL (/50) :

Page 1 of 7

Problem 1. (15 points):

Multiple choice. For each of the following multiple choice problems, choose the single best answer
by circling its corresponding letter.

1. Which of the following bits of code can be used to update the PC and PS registers so as to
yield control back to the “user half” of a process?

(a) rtt

(b) rts pc

(c) jsr pc,pword

(d) mov UISD0,-(sp)

2. Which of the following data/structures associated with a given process must remain in core
while the process is swapped out?

(a) the process priority

(b) the prototype segmentation registers

(c) the process code/text segment

(d) the kernel stack

3. It is frequently the case that v6 code needs to be run atomically. Which of the following can
be used to begin an atomic chunk of code?

(a) bis $340, PS

(b) spl0()

(c) rp->p_stat = SWAIT

(d) mov $1, SSR0

4. Which of the following will almost certainly be executed by the kernel in response to every
system call invocation?

(a) jsr r0,call1; _trap

(b) mov nofault,(sp)

(c) wakeup(&proc[1]);

(d) newproc()

5. One “gotcha” in newproc occurs when there is insufficient core space for the new process.
Which of the following captures the context of the process before the necessary swap-out ?

(a) rp->p_flag =& ~SSWAP;

(b) aretu(u.u_ssav)

(c) savu(u.u_rsav)

(d) savu(u.u_ssav)

Page 2 of 7

Problem 2. (9 points):

The following bit of code is taken from the newproc function. Recall that rip points to the current
process, and rpp points to the process being created.

1859 rip = u.u_procp;

1860 up = rip;

1861 rpp->p_stat = SRUN;

1862 rpp->p_flag = SLOAD;

1863 rpp->p_uid = rip->p_uid;

1864 rpp->p_ttyp = rip->p_ttyp;

1865 rpp->p_nice = rip->p_nice;

1866 rpp->p_textp = rip->p_textp;

1867 rpp->p_pid = mpid;

1868 rpp->p_ppid = rip->p_pid;

1869 rpp->p_time = 0;

• What is the purpose of lines 1868-1869?

• After executing lines 1861-1862, which of the two processes is the currently executing
process? Explain.

• Later in newproc we find the following line just before allocating space for the new process:

u.u_procp = rpp;

What is its purpose? Be specific.

Page 3 of 7

Problem 3. (9 points):

This problem is based on the following section of code:

p = NULL;

n = 128;

i = NPROC;

do {

rp++;

if(rp >= &proc[NPROC])

rp = &proc[0];

if(rp->p_stat==SRUN && (rp->p_flag&SLOAD)!=0) {

if(rp->p_pri < n) {

p = rp;

n = rp->p_pri;

}

}

} while(--i);

• Where and when would you expect to find this code executed in the kernel?

• Justify the initial value of the variable n – what does it refer to in the body of the loop?

• Upon exiting the loop, what does the variable p refer to?

Page 4 of 7

Problem 4. (9 points):

The following code appears in the body of the clock interrupt handler – note that some lines have
been omitted for the sake of brevity. HZ is 60, and SCHMAG is 10.

3794 pp = u.u_procp;

3795 if (++pp->p_cpu == 0)

3796 pp->p_cpu--;

3797 if (++lbolt >= HZ) {

3798 if ((ps&0340) != 0)

3799 return;

3800 lbolt =- HZ;

....

3810 for (pp = &proc[0]; pp < &proc[NPROC]; pp++)

3811 if (pp->p_stat) {

3812 if (pp->p_time != 127)

3813 pp->p_time++;

3814 if ((pp->p_cpu & 0377) > SCHMAG)

3815 pp->p_cpu =- SCHMAG; else

3816 pp->p_cpu = 0;

3817 if (pp->p_pri > PUSER)

3818 setpri(pp);

3819 }

.... /* rest of code omitted */

3830 }

• What is the purpose of lines 3795-3796? What is the significance of the pp->p_cpu variable?

• How often is the loop at line 3810 executed?

• What is the purpose of lines 3815-3816?

Page 5 of 7

Problem 5. (9 points):

You’re just starting work at Filesystems-R-Us – a startup with high hopes for its fledgling file
system. On your first day you notice that their current filesystem is FAT-based, non-journaled, and
lacks support for a filesystem buffer. You make for the CTO’s office and prepare yourself for a battle.

Your boss tries to justify the design decisions with the following statements. For each statement,
supply a rejoinder consisting of (1) a critique of the current approach and (2) a proposal and
justification for a different, better approach.

1. “FAT is compact, efficient, and easy to implement!”

2. “Journaling would force us to duplicate every write to the disk – it’s just too inefficient!”

3. “Writing to a filesystem buffer (instead of writing directly to the disk) results in a loss of
durability to the client!”

Page 6 of 7

Problem 6. (4 points):

One of the alternatives we considered to the journaling mechanism implemented by most modern
filesystems is the notion of a log-structured filesystem. Briefly explain and discuss the pros and cons
of a log-structured filesystem.

Problem 7. (4 points):

In addition to improving robustness via software journaling, we also considered increasing failure
resistance through the use of various RAID levels. Given the right combination of RAID techniques,
is it possible to circumvent the use of journaling/logging altogether? Explain.

Page 7 of 7

