Alternative
Concurrency Models

Computer
Science

CS 450 : Operating Systems
Michael Lee <l1lee@iit.edu>

ﬁ' IIT College of Science
/' Linois InsTITUTE oF TECHNOLOGY




“Ihe free lunch 1s over. We have grown used to the idea that our programs
will go faster when we buy a next-generation processor; but that time has
passed. While that next-generation chip will have more CPUS, each
indiwndual CPU will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel programs.”™

- Simon Peyton Jones, Beautiful Concurrency

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




:::m :::m Delta in Position | Programming Language s'::u::i.z ;:;:1 | status
1 2 L] c 19.295% | +1.29% | A
2 1 [ ] Java 16.267% | 2.49% | A
3 6 1t Objective-C 9770% | +361% | A
4 3 [ ] C++ 9.147% | +0.30% | A
5 4 [ ] c# 6.596% | 0.22% | A
6 5 [ ] PHP 5614% | -0.98% | A
7 7 (Visual) Basic 5528% | +1.11% | A
8 8 Python 3861% | -0.14% | A
9 9 Perl 2267% | 020% | A
10 1 1 Ruby 1724% | +029% | A
11 10 [ ] JavaSeript 1328% | 0.14% | A
12 12 Delphi/Object Pascal 0.993% -0.32% A
13 14 [} Lisp 0969% | -007% | A
14 15 [} Transact-SQL 0.875% | +0.02% | A
15 39 | TETTEEEEET | visual Basic NET 0.840% | +053% | A
16 16 Pascal 0.830% | -002% | A
17 13 Hu Lua 0723% | -043% | A-
18 18 Ada 0700% | +0.02% | A-
19 17 u PL/SQL 0604% | -012% | B
20 22 it MATLAB 0563% | +0.02% | B

http://www.tiobe.com

TTIOBE language popularity chart

IIT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

v




most popular paradigms are

imperative and object-oriented

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY




Imperative: a program consists of a sequence
of statements that read and alter process state

e.g., for (i=0; i<N; i++) {

sum += arr[i];

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY




carly on, procedural languages helped us
modularize imperative programs by
separating logic into different procedures

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY




... not quite good enough.

Bad programmers can too easily write

“spaghetti code” (e.g., with globs & gotos)

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY




OOP: bundle data and methods that act

on them into objects; goal 1s encapsulation

e.g., accl = BankAccount(balance=1000.90)
acc2 = BankAccount(balance=0.0)
acc2. dep051t(5@@ 0)
accl.transfer _to(acc2, 250.0)
print(accl.balance(), acc2.balance())

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




In most OO languages, objects are
mutable; 1.e., objects may consist of many
pieces of shareable, changeable state

(aka “big mutable balls™)

ﬁ,' IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




Most common concurrency model:
- explicitly created & managed #hreads
- shared, freely mutable state (memory)

- lock-based synchronization
(e.g., semaphores, mutexes)

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

10




“Mutual-exclusion locks are one of the most widely used and fundamental abstractions for
synchromzation ... Unfortunately, without specialist programmang care, these benefits rarely
hold for systems containing more than a handful of locks:

- For correctness, programmers must ensure that threads hold the necessary locks to avoid
conflicting operations being executed concurrently...

- For lweness, programmers must be careful to avoid introducing deadlock and, consequently,
they may cause software to hold locks for longer than would otherwise be necessary ...

- For hugh performance, programmers must balance the granularity at which locking operates
against the time that the application will spend acquiring and releasing locks.”™

- Keir Fraser, Concurrent Programming Wathout Locks

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

11




1.e., Implementing correct concurrent
behavior via locks 1s difficult!

but correctness can be verified
via testing, right?

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

12




“... one of the fundamental problems with testing ... [is that] testing for one
set of 1mputs tells you nothing at all about the behaviour with a different
set of inputs. In fact the problem caused by state 1s typically worse —
particularly when testing large chunks of a system — simply because even
though the number of possible inputs may be very large, the number of
possible states the system can be in s often even larger.”

“One of the issues (that affects both testing and reasoning) 1s the exponential
rate at which the number of possible states grows — for every single bit of
state that we add we double the total number of possible states.”

- Ben Moseley and Peter Marks, Out of the Tar Pit

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

13




“Concurrency also affects testing ... Running a test in the presence of
concurrency with a known mitial state and set of wnputs tells you nothing at
all about what will happen the next time you run that very same test with the
very same inputs and the very same starting state. . . and things can’t really
get any worse than that.”

- Ben Moseley and Peter Marks, Out of the Tar Pit

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

14




Another 1ssue: composability

I.e., after building and testing a software
module, can we easily combine 1t with
other (tested) modules to build a system?

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




“... consider a hash table with thread-safe insert and delete operations. Now
suppose that we want to delete one item A from table t1, and insert it into
table t2; but the intermediate state (in which neither table contains the item)
must not be visible to other threads. Unless the implementor of the hash table
anticipates this need, there 1s sumply no way to satisfy this requirement. .. In
short, operations that are indwidually correct (insert, delete) cannot be
composed nlo larger correct operations.”

- Tim Harris et al, Composable Memory Transactions

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

16




lack of composability is a big problem!

- code modules can not make use of
each other without additional
reasoning/testing

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

17




“Crvtlization advances by extending the number of important operations
which we can perform without thinking ™

- Alfred North Whitehouse

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

18




the root problem 1s shared, freely mutable state
requires the use ot synchronization

leading to unnecessary, or accidental,
complexity in the implementation

ﬁf:':' IIT College of Science

v’// ILLINOIS INSTITUTE OF TECHNOLOGY

19




“Anyone who has ever telephoned a support desk for a software system and
been told to “try it again”™, or “reload the document™, or “restart the pro-
gram™, or “reboot your computer” or “re-install the program™ or even “re-
install the operating system and then the program™ has direct experience of the
problems that state causes for writing reliable, understandable software.”

- Ben Moseley and Peter Marks, Out of the Tar Pit

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

20




“Complexity 1s the root cause of the vast majority of problems with soft-
ware today. Unrelhability, late delwery, lack of security — oflen even poor
performance in large-scale systems can all be seen as derwing ultimately from
unmanageable complexity. ‘I he primary status of complexity as the major
cause of these other problems comes ssmply from the fact that being able to
understand a system s a prerequisite for avording all of them, and of
course 1t 1s this which complexaty destroys.”™

- Ben Moseley and Peter Marks, Out of the Tar Pit

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

21




ooal: avoid accidental complexity

— don’t make concurrent programming

harder than i1t needs to be!

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

22




Alternative concurrency models:

1. Actor model

2. Software Transactional Memory

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

23




1. Actor model
- no shared state, ever
- actors are concurrent & independent

- actors interact through message passing

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

24




e.g., birlang
- created at Ericsson for telecom apps

- designed for concurrent, distributed,
real-time systems

- 99.9999999 percent reliability

(9 nines, or 31 ms. downtime a year!)”

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




- functional core
- messages are asynchronous

- creating actors (aka processes) 1s cheap
(scales to millions of processes)

- essential architecture: client/server

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

26




% basic pattern matching; note vars 1in uppercase
factorial(@) -> 1;
factorial(N) -> N * factorial(N-1).

% 1f expression: one guard must evaluate to true
max(A,B) -> if A < B -> B;
true -> A
end.

% atoms (lLowercase) and fixed-arity tuples

area({circle, R}) -> 3.1415 * R * R;
area({rectangle, L, W}) -> L * W;

area({square, L}) -> area({rectangle, L, L});
area(_) -> unknown.

> basics:factorial(10).
3628800

> basics:max(5, 10).

10

> basics:area({rectangle, 5, 10}).
50

> basics:area({triangle, 4, 5, 6}).
unknown

of Science
eie vive...UTE OF TECHNOLOGY

27




Creating processes:
Pid = spawn(Fun)

Sending messages (asynchronous):
Pid ! Message

Recelving messages (synchronous):

receive Patternl -> Expl; ... end
Receiving with timeout:

receive ... after Millis -> Exp end

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

28




Server template:

loop() ->
receive
terminate -> done;
Message -> process(Message),
Loop()
end.

Server with “state’:
loop(State) ->

receive

terminate -> done;

Message -> loop(process(Message,
end.

State))

29




loop() ->
receive
{From, Msg} ->
io:format("Got ~s~n", [Msg]),
From ! lists:reverse(Msg),

loop();
terminate ->
io:format("Stopping~n")
end.
start() -»>

Pid = spawn(fun loop/0),
Pid ! {self(), "hello!"},
receive
Msg -> io:format("Got ~s~n", [Msg])
end,
Pid ! terminate.

> basics.start().
Got hellol!

Got !olleh
Stopping

... College of Science
‘,/ ILLINOIS INSTITUTE OF TECHNOLOGY

30




consumer() ->
receive
% consumer blocks for message

terminate -> done;
Val -> io:format("C: got ~w~n", [Val]),
consumer()
end.

producer(Val, Consumer) ->
if Val =:= ?MAX_VAL ->
Consumer ! terminate;
true ->

% producer sends value to consumer
Consumer ! Val,
% then works on producing next value
producer(Val + 1, Consumer)

end.

start() -»>
C = spawn(fun consumer/0),
% producer needs consumer pid & start value
spawn(fun() -> producer(@, C) end).
ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

31



- processes are automatically backed by
“mailboxes” — by default unbounded

- to simulate bounded bufter, must use
messages to convey state & synch

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

32




producer(Val, Consumer, Ahead) ->

if Val =:= ?MAX_VAL ->

Consumer | terminate;

Ahead =:= ?MAX_AHEAD ->
% throttle producer --- force to wait for ack
receive

ack -> producer(Val, Consumer, Ahead - 1)

end;

true ->
Consumer ! {self(), Val}, % send my pid to consumer
receive

% try to get ack (immediate timeout)
ack -> producer(Val + 1, Consumer, Ahead)
after
@ -> producer(Val + 1, Consumer, Ahead + 1)
end
end.

consumer() ->
receive
terminate -> done;
{Producer, Val} -> io:format("C: got ~w~n", [Val]),
Producer ! ack,
consumer()
end.

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

33




producer(Val, Consumer, Ahead) ->

if Val =:= ?MAX_VAL ->

Consumer | terminate;

Ahead =:= ?MAX_AHEAD ->
% throttle producer --- force to wait for ack
receive

ack -> producer(Val, Consumer, Ahead - 1)

end;

true ->
Consumer ! {self(), Val}, % send my pid to consumer
receive

% try to get ack (immediate timeout)
ack -> producer(Val + 1, Consumer, Ahead)
after
@ -> producer(Val + 1, Consumer, Ahead + 1)
end
end.

subtle 1ssue: once producer hits cap, will
never drop below ?MAX_AHEAD-1

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




producer(Val, Consumer, Ahead) ->

if Val =:= ?MAX_VAL ->

Consumer | terminate;

Ahead =:= ?MAX_AHEAD ->
% throttle producer --- force to wait for ack
receive

ack -> producer(Val, Consumer, Ahead - 1)

end;

true ->
receive

% process all outstanding acks in mailbox
ack -> producer(Val, Consumer, Ahead - 1)
after
© -> Consumer ! {self(), Val},
producer(Val + 1, Consumer, Ahead + 1)
end
end.

takeaway: Erlang doesn’t magically take
care of synchronization 1ssues!

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

35




General 1ssues:

- Messages may be big — but no other
way of sharing data!

- Process synchronization 1s still hard!

- 'lypically use well known protocols

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

36




But we’ve eliminated shared state 1ssues!

Huge boon to reasoning, composability;

and robu

Stness

- actors are independent — 1t one 1s

unres,

bonsive, can route around it

Also, ma.

kes deploying on distributed

hardware transparent

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

37




Projects in Erlang:
- Facebook Chat
- RabbitM Q) messaging framework

- lots of telephony and real-time (e.g.,
routing, VOIP) services

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




2. Software Iransactional Memory (STM)
- supports shared memory

- but all changes are vetted by runtime

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




S TM guarantees AGIL)) properties:
- Atomicity
- Consistency

- Isolation

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

40




Atomicity:

- all requested changes take place
(commit), or none at all (rollback)

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

41




Consistency:
- updates always leave data 1n a valid state

- 1.e., allow validation hooks

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

42




Isolation:

- no transaction sees intermediate
effects of other transactions

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

43




e.g., Glojure
- “mvented” by Rich Hickey
- a (mostly functional) Lisp dialect

- primarily targets JVM

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




synchronization 1s buult into the plattorm

based on a re-examination ot stafe vs. wdentity

ﬁf:'.-' IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

45




Tenet: most languages (notably, OOPLs)
simplity but complicate dentity

- wdentity 1s disconnected from state

- an object’s state (attributes) can change,
but 1t’s still considered the same object

- e.g., pointer based equality

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




Ramaifications:

- threads can concurrently change the
state of the same object

- objects that are entirely 1dentical (state-
wise) are considered different

- requires comparators, .equals, etc.

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

47




Alternate view: objects perpetually advance
through separate, mstantaneous states

- we convenlently use names
(1.e., references) to refer to the
most recent state

THE EKIINEOGRAPH.

48




In Clojure, all values (state) are immutable

... but we can point a given
reference at different states

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

49




to “update” a data structure:
]1.access current value via reference
9.use 1t to create a new value

3. modify reterence to reter to new value

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

50




(old “version™
stll exists!)

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

51




problem: very inethicient for large data
structures

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

52




- 1n practice, share structure with old version

ﬁf.’:’ IIT College of Science
/' Linois InsTITUTE oF TECHNOLOGY




“persistent” data structures
- allow for structural sharing
- ok because they are immutable

- allow multiple versions ot a given data
structure to be kept around

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

54




Multiversion Concurrency Control (MVCC)
- track versions ot all data 1n history

- support “point-in-time” view of all data

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

55




Value vs. Reterence dichotomy 1s crucial

- mmmutable values let us use data without
concern that it will change under us

- references let us easily coordinate
“changes”

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

56




important: how can we alter references?

-1t arbitrarily, still have synch 1ssue

- Clojure has multiple types of references,
with different “change” semantics

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

57




Clojure reference types:

- vars
- atoms
- refs
- agents

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

58




vars are classic “variables”
- bound to root values, shared by all threads
- bad style to change at runtime

-1.e., treat bound values as constants

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

59




355 vars
(def x 10)

(inc x) ; => 11

X 3 => 10 (unchanged)

(def acc {:name '"checking" :balance 1000})

(defstruct account :name :balance)
(def acc2 (struct account "savings'" 2000))

(= acc2 {:name "savings" :balance 2000}) ; => true
(def acc3 (assoc acc2 :name "business'"))

acc3 ; => {:name "business" :balance 2000}
acc2 ; => {:name "savings" :balance 2000} (unchanged)

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

60




atoms support wsolated, atomic updates

- provide with a function to compute
new value from old value

- atom 18 updated 1n mutex

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

61




;55 atoms

(def count (atom 0))

(deref count) ; => 0

@count ; => 0 (‘@’ 1s shortcut for deref)
(swap! count 1inc)

@count ; => 1

(reset! count 0)

@count ; => 0

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




swap runs function on atom’s current value

-1f another thread changes the atom

betore I write my update, retry!

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

63




refs support coordinated updates
- updates can only take place 1n transactions

- within a transaction, we automatically
get atomicity/1solation

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

64




;55 refs

(def a (ref 10))
(def b (ref 20))

(defn swap [refl ref2]
(dosync ; start transaction
(let [vall @refl
val2 @ref2]
(ref-set refl val2)
(ref-set ref2 vall))))

(swap a b) ; @a = 20, @b = 10

(dosync (alter a inc)) ; @a = 21

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

65




Demo

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




important: transaction 1s run optimustically
- refs are all updated at single commat-point

-1f another transaction changes any of the
refs I'm altering before I commat, rerun!

- alternative: commute

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




agents support asynchronous updates

- update functions run 1n separate thread

- at most one action being run at any time

-1.e., updates (aka actions) are queued

A\

IIT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

68




;>3 agents

(def bond (agent 007))
@bond ; => 7

(send bond 1inc)

;3 a short while later...
@bond ; => 8

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




Demo

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY




Benefits of S'TM:

- automatic support for mutex/1solation

- optimistic transactions maximize
concurrency

- framework helps guarantee freedom
from race conditions!

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

71




Clojure-specific benefits:

- modifications to rets must happen within
transactions (1.e., not advisory)

- persistent data structures allow for
“snapshot” MVCUCG (vs. logging in

other implementations)

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




Drawbacks:

- transaction restarts = overhead
- performance 1s not transparent
- compared to locking?

- MVCC = overhead (need a lot of GC)

- snapshot 1solation — write skew

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

73




Write skew scenario:
- Accounts X, 1 with total min balance M
-Thread A4 debits X, checks X + V' < M
- 'Thread B debits 1, checks X + V' < M

- Only conflicting writes require rollback!

- A may read old version of ¥} (and B of X)

IIIIIIIIIIIIIIIIIIIIIIIIIIIII




Clojure “fix” for write-skew:

- can pretend to update reterence:
(ref-set ref @ref)

-or use (ensure ref) — requires
rollback it ref has been changed at

commit point

ﬁf:':' IIT College of Science

v’/ ILLINOIS INSTITUTE OF TECHNOLOGY

75




Jdummary

= |IT College of Science

NS
\I/ ILLINOIS INSTITUTE OF TECHNOLOGY

76




Chips aren’t getting any faster, but we are
getting more processing cores

— we need a scalable way of writing
concurrent programs

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

77




Mutable, shared memory and locks are
hard to reason about and add unnecessary
complexity to programs (especially in
concurrent settings)

ﬁf:':' IIT College of Science

!// ILLINOIS INSTITUTE OF TECHNOLOGY

78




‘Two alternative models:

- Actor model: no shared state, ever;
communicate via messages

-STM: transactional support for state
transactions

ﬁf:':' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

79




Implementations:

- Actor model: Erlang, Scala, node.js

-STM: Clojure, Haskell, Python, etc.

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




No silver bullet!

- Actor model: still need to worry about
synchronization, deadlock still possible

-STM: performance under scrutiny

ﬁ" IIT College of Science
/' \LUNoIs INSTITUTE OF TECHNOLOGY




What would you use?

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

82




Bibliography:

- Harris, T., Marlow, S., & Peyton-Jones, S. Composable memory transactions. In Proceedings of
the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP °05).

- Peyton-Jones, S. Beautiful concurrency. Beautiful Code. 2007.

- Moseley, B & Marks, P. Out of the tar pit. 2006.

- Fraser, K., & Harris, 1. Concurrent programming without locks. ACM Transactions on Computer
Systems, 25(2), 5. 2007.

- Hansen, P. Java's insecure parallelism. SIGPLAN notices. 1999.

- Hickey, R. Are we there yet? JVM Languages Summit presentation. 2009.

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

83




