Deadlock

CS 450 : Operating Systems
il N\[ichael Lee <lee@iit.edu>

ﬁf.’:’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

deadlock |'dedlak|

noun
1 [in sing. | a situation, typically one involving opposing
parties, in which no progress can be made : an attempt to

break the deadlock.

- New Oxford American Dictionary

Y

.
.
.
-
.
=
=
.

—_—— ———

Trafthc Gridlock

mtx A.lock() mtx B.lock()
mtx B.lock() mtx A.lock()
critical section # critical section
mtx B.unlock() mtx B.unlock()
mtx A.unlock() mtx A.unlock()

Software Gridlock

Y Necessary conditions

for Deadlock

i.e., what conditions need to be true (of some
system) so that deadlock is possible?

(not the same as causing deadlock!)

[. Mutual Exclusion

- resources can be held by processes in
a mutually exclusive manner

I1. Hold & WaAit

- while holding one resource (in mutex),
a process can request another resource

[II. No Preemption

- one process can not force another to give
up a resource; i.c., releasing is voluntary

IV. Circular Wait

- resource requests and allocations create a
cycle in the resource allocation graph

10

Y Resource Allocation Graphs

Process : ‘

Resource :

Request :

Allocation :

12

Circular wait is absent = no deadlock

13

B

All 4 necessary conditions in place; Deadlock!

14

in a system with only single-instance resources,

necessary conditions < deadlock

15

Cycle without Deadlock!

16

not practical (or always possible) to detect

deadlock using a graph

— but convenient to help us
reason about things

17

Y Approaches to
Dealing with Deadlock

1. Ostrich algorithm
(ignore it and hope it never happens)
2. Prevent it from occurring (avoidance)

3. Detection & recovery

19

) Deadlock avoidance

€ Approach 1: eliminate necessary
condition(s)

21

Mutual exclusion?

- eliminating mutex requires that all
resources be shareable

- when not possible (e.g., disk, printer), can
sometimes use a spooler process

22

but what about semaphores, file locks, etc.?

- not all resources are spoolable

- cannot eliminate mutex in general

23

Hold & Wait?

- elimination requires resource requests to be
all-or-nothing affair

- it currently holding, needs to release all
before requesting more

24

in practice, very inefhcient
& starvation is possible!

— cannot eliminate hold > wait

25

No preemption?

- alternative: allow process to preempt each
other and “steal” resources

- mutex locks can not be counted on to

stay locked!

- 1n practice, cannot eliminate this either!

26

Circular Wait is where it’s at.

27

simple mechanism to prevent wait cycles:
- order all resources

- require that processes request
resources in order

28

but impractical — can not count on processes
to need resources in a certain order

... and forcing a certain order can
result in poor resource utilization

29

€ Approach 2: intelligently prevent

circular wait

30

R

¢

possible to create a cycle (with one edge)?

31

R

possible to create a cycle (with one edge)?

32

it's quite poss
maybe P, wil

Ro

ible that P> won’t need R», or
 release Ry before requesting R,

but we don’t .

cnow if/when...

33

Ro

preventing circular wait means avoiding a state
where a cycle is an imminent possibility

34

Ro

to predict deadlock, we can ask processes to
“claim” all resources they need in advance

35

graph with “claim edges”

36

P, requests R

37

R

.q ;.
L

Ro

convert to allocation edge; no cycle

38

R

9\

P requests R»

39

R

if we convert to an allocation edge ...

40

R

cycle involving claim edges!

41

R

Ro

means that if processes fulfill their claims,
we cannot avoid deadlock!

42

R

ie,P1> R, P> Ry

43

R

R
R2
P; - R, should be blocked by the kernel,

even if it can be satisfied with available resources

44

R

Ro

this is a “safe” state ... i.e., no way a process can

cause deadlock directly (i.e., without OS alloc)

45

idea: if granting an incoming request would
create a cycle in a graph with claim edges, deny
that request (i.e., block the process)

— approve later when no cycle would occur

R

9\

P> releases R

47

R

9\

now ok to approve P; > R, (unblock P;)

F.

Ro

48

should we still deny P; » Ry?

49

problem: this approach may incorrectly
predict imminent deadlock when resources
with multiple instances are involved

50

requires a 7zore general definition of “safe state”

51

€ Banker’s Algorithm

(by Edsger Dijkstra)

52

basic idea:
- define how to recognize system “safety”
- whenever a resource request arrives:
- simulate allocation & check state

- allocate iff simulated state is safe

53

some assumptions we need to make:

1. a non-blocked process holding a resource
will eventually release it

2. it is known 4 priori how many instances of
each resource a given process needs

54

Safe State

- 'There exists a sequence <Py, Py, ..., Pn>,
where each Py can complete with:

- currently available (free) resources

- resources held by Pj...Pi.

55

Data Structures

Processes P:...Pn, Resources Ri...Rm:

available[j] = num of R; available

max[i][j] = max num of R; required by P;

]
j.
1.
]

allocatedl|i] num of R; allocated to P;

need[i][jl = maxl[i][j] - allocatedli][j]

56

Safety Algorithm

1.

finish[i] < false Vie l..n
work <— available

. Find i : finish[i] = false & needlil[j] < worklj] V]

If none, go to 4.

. work <— work + allocatedli]; finishl[i] «— true

Go to 2.

. Safe state iff finish[i] = true V i

57

incoming request represented by request array

request[j] = num of resource R; requested

(a process can require multiple instances of
more than one resource at a time)

58

Processing Request from Pi:

1. If request[jl < need[k][j] V j, continue, else error

2. If request[j] < available[j] V j, continue, else block
3. Run safety algorithm with:

- available <— available - request

- allocated[k] < allocated[k] + request

- need[k] < need[k] - request

59

if safety algorithm fails, do not allocate, even if
resources are available!

— either deny request or block caller

60

Po
P+
P2
Ps
P4

3 resources: A (10), B (5), C (7)

Max Allocated Available Need
/ 3 3 0 1 0 ‘3 ‘ 3 ‘ 2‘ 7 4 3
3 2 2 2 0 0 1 2 2
9 0 2 3 0 2 6 0 0
2 2 2 2 1 1 0 1 1
4 3 3 0 0 2 4 3 1

o Safe state: <P1, P3, P(), Pz, P4>

o DP;requests <0,0,1>

o Porequests <0, 3, 0>

61

€ Banker’s algorithm discussion

62

1. Efhiciency?

)

how fast is it?

how often is it run?

63

1. finish[i] < false Vie 1...n
work <— available for up to N processes, check M resources
2.(Find i : finish[i] = false & need[il[jl < work[j] v j]
If none, go to 4.

3. work < work + allocatedli]; finish[i] < true
Go to 2.) loop for N processes

4. Safe state iff finish[i] = true V i

O(N-N-M) = O(N2.M)

64

how often to run?
- need to run on every resource request

- can't relax this, otherwise system might
become unsafe!

65

2. Assumption #1: processes will eventually
release resources

66

- assuming well-behaved processes

- not 100% realistic, but what else to do?

67

3. Assumption #2: a priori knowledge of max
resource requirements

68

- highly unrealistic
- process resource needs are dynamic!

- without this assumption, deadlock
prevention becomes much harder...

69

€ Aside: decision problems,
complexity theory
& the halting problem

70

input

decision algorithm

a decision problem

71

e.g., is X evenly divisible by Y?
is N a prime number?

does string S contain pattern P?

72

a lot of important problems can be reworded

as decision prob!

e.g., traveling sa

ICINS:

esman problem (find the

shortest tour through a graph)

=> is there a tour shorter than Z.?

73

complexity theory classifies decision problems
by their difficulty, and draws relationships

between those problems & classes

74

class P: solutions to these problems can be

found in polynomial time (e.g., O(N2))

75

class NP: solutions to these problems can be
verified in polynomial time

— but finding solutions may be harder!

(i.e., superpolynomial)

76

big open problem in CS:
P=NP?

77

why is this important?

78

all problems in NP can be reduced to another
problem in the NP-complete class,

and all problems in NP-complete can be
reduced to each other)

79

if you can prove that 272y NP-complete problem
is in P, then 2// NP problems are in P!

(more motivation: you also win $1M)

80

if you can prove P # NP, we can stop looking tor
fast solutions to many hard problems

(motivation: you sz#// win $1M)

81

input

decision algorithm

a decision problem

82

resources available,
request & allocations,
running programs

!

will the system

deadlock?

deadlock prevention

83

description of a
program and its inputs

!

will the system halt
(or run forever)?

the halting problem

84

e.g., write the function:
halt(f) » bool

- return true if f will halt

- return false otherwise

85

def halt(f):
your code here

def loop_ forever():
while True: pass

def just_return():
return True

halt(loop_ forever)

halt(just _return)

=> False

=> True

86

def halt(f):
your code here

def gotcha():
if halt(gotcha):
loop_ forever()
else:
just _return()

halt(gotcha)

HEA%RH@! | |

87

88

proof by contradiction:

the halting problem is undecidable

89

generally speaking, deadlock prediction can be
reduced to the halting problem

90

i.e., determining if a system is deadlocked is, in
general, provably impossible!!

91

92

Y Deadlock Detection
& Recovery

€ Basic approach: cycle detection

94

e.g., Tarjan’s strongly connected components

algorithm; O(|V|+|E|)

95

need only run on mutex resources and
“involved” processes

... still, would be nice to reduce the
size of the resource allocation graph

96

actual resources involved are unimportant —
only care about relationships between processes

97

Resource Allocation Graph

98

“Wait-tfor” Graph

99

Substantial optimization!

100

... but not very useful when we have multi-
instance resources (false positives are likely)

101

€ Deadlock detection algorithm

102

important: do away with requirement of
a priori resource need declarations

103

new assumption: processes can complete with
current allocation + all pending requests

i.e., no future requests

unrealistic! (but we have no crystal ball)

104

keep track of all pending requests in:

request[i][j]= num of R; requested by P;

105

Detection algorithm ... &

anything
1. finish[i] « all_nil?(allocated[i) Vie 1..n
work <— available

2. Find i: finish[i] = false & requestli]l[j] < work[j] V]
If none, go to 4.

3. work <— work + allocatedli]; finish[i] < true
Go to 2.

4. If finish[i] # true V i, system is deadlocked.

106

3 resources: A (7), B (2), C (6)

Allocated Request

Available

A B | C A | B B
Po O 1 O OOO‘O‘O‘O‘
P+ | 2 | 0 | O 2 | 0 | 2
P, 1 3 | 0 | 3 O O O
Ps 2 | 1 | 1 1 0 O
P, A 0 | 0O | 2 o 0 2

e Not deadlocked: <P0, Pz, Pl, P3, P4>
o P> requests <0,0, 1>

107

€ Discussion

108

1. Speed?

109

. finish[i] < all_nil?(allocated]i]) Vie 1...n
work <— available

. Find i: finish[i] = false & requestli][j] < work[j] V]
If none, go to 4.

. work <— work + allocatedl[i]; finish[i] <= true
Go to 2.

. If finish[i] # true V i, system is deadlocked.

Still O(N-N-M) = O(N2.M)

110

2. When to run?

111

... as seldom as possible!

tradeoft: the longer we wait between checks,
the messier resulting deadlocks might be

112

3. Recovery?

113

One or more processes must release resources:
- via forced termination

- resource preemption —__

- system rollback —

cool, but how?

114

Resource preemption only possible with
certain types of resources

- no intermediate state

- can be taken away and returned (while

blocking process)
- e.g., mapped VM page

115

Rollback requires process checkpointing:
- periodically autosave/reload process state
- cost depends on process complexity

- easier for special-purpose systems

116

How many to terminate/preempt/rollback?
- at least one for each disjoint cycle

- non-trivial to determine how many cycles
and which processes!

117

Selection criteria (who to kill) = minimize cost
- # processes
- completed run-time

- # resources held / needed

- arbitrary priority (no killing system
processes!)

118

119

Dealing with deadlock is hard!

120

Moral of this and the concurrency material:
- be careful with concurrent resource sharing

- use concurrency mechanisms that avoid
explicit locking whenever possible!

121

