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Deadlock
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- New Oxford American Dictionary

deadlock |ˈdedˌläk|
noun
1 	 [in sing. ] a situation, typically one involving opposing 
	 parties, in which no progress can be made : an attempt to 
	 break the deadlock.
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Traffic Gridlock
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Soware Gridlock

mtx_A.lock()
mtx_B.lock()

  # critical section

mtx_B.unlock()
mtx_A.unlock()

mtx_B.lock()
mtx_A.lock()

  # critical section

mtx_B.unlock()
mtx_A.unlock()
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§ Necessary conditions 
for Deadlock
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i.e., what conditions need to be true (of some 
system) so that deadlock is possible?
(not the same as causing deadlock!)
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I. Mutual Exclusion
- resources can be held by processes in 

a mutually exclusive manner
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II. Hold & Wait
- while holding one resource (in mutex), 

a process can request another resource
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III. No Preemption
- one process can not force another to give 

up a resource; i.e., releasing is oluntary
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IV. Circular Wait
- resource requests and allocations create a 

cycle in the resource allocation graph
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§ Resource Allocation Graphs
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Process :

Resource :

Request :

Allocation :
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P1 P2 P3

R1 R2

R3

Circular wait is absent = no deadlock
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All 4 necessary conditions in place; Deadlock!

P1 P2 P3

R1 R2

R3
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in a system with only single-instance resources,
necessary conditions ⇔ deadlock
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Cycle without Deadlock!

P1 P2

P4

R1

R2

P3
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not practical (or always possible) to detect 
deadlock using a graph

— but convenient to help us 
reason about things
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§ Approaches to 
Dealing with Deadlock
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1. Ostrich algorithm
(ignore it and hope it never happens)

2. Prevent it from occurring (avoidance)
3. Detection & recovery

19



§ Deadlock avoidance
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¶ Approach 1:  eliminate necessary
 condition(s)
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Mutual exclusion?
- eliminating mutex requires that all 

resources be shareable
- when not possible (e.g., disk, printer), can 

sometimes use a spooler process
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but what about semaphores, file locks, etc.?
- not all resources are spoolable
- cannot eliminate mutex in general
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Hold & Wait?
- elimination requires resource requests to be 

all-or-nothing affair
- if currently holding, needs to release all 

before requesting more
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in practice, very inefficient 
& starvation is possible!
— cannot eliminate hold & wait

25



No preemption?
- alternative: allow process to preempt each 

other and “steal” resources
- mutex locks can not be counted on to 

stay locked!
- in practice, cannot eliminate this either!
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Circular Wait is where it’s at.
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simple mechanism to prevent wait cycles:
- order all resources
- require that processes request 

resources in order
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but impractical — can not count on processes 
to need resources in a certain order

… and forcing a certain order can 
result in poor resource utilization
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¶ Approach 2: intelligently prevent 
 circular wait
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possible to create a cycle (with one edge)?

P1 P2

R1

R2
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possible to create a cycle (with one edge)?

P1 P2

R1

R2
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P1 P2

R1

R2

it’s quite possible that P2 won’t need R2, or 
maybe P2 will release R1 before requesting R2,
but we don’t know if/when… 
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preventing circular wait means avoiding a state 
where a cycle is an imminent possibility

P1 P2

R1

R2
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to predict deadlock, we can ask processes to 
“claim” all resources they need in advance

P1 P2

R1

R2
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P1 P2

R1

R2

graph with “claim edges”
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P1 P2

R1

R2

P2 requests R1
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convert to allocation edge; no cycle

P1 P2

R1

R2
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P1 requests R2

P1 P2

R1

R2
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if we convert to an allocation edge ...

P1 P2

R1

R2
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cycle involving claim edges!

P1 P2

R1

R2
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means that if processes fulfill their claims, 
we cannot avoid deadlock!

P1 P2

R1

R2
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i.e., P1 → R1, P2 → R2

P1 P2

R1

R2
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P1 → R2 should be blocked by the kernel, 
even if it can be satisfied with available resources

P1 P2

R1

R2
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this is a “safe” state … i.e., no way a process can 
cause deadlock directly (i.e., without OS alloc)

P1 P2

R1

R2
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idea: if granting an incoming request would 
create a cycle in a graph with claim edges, deny 
that request (i.e., block the process)

— approve later when no cycle would occur
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P2 releases R1

P1 P2

R1

R2
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now ok to approve P1 → R2 (unblock P1)

P1 P2

R1

R2
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should we still deny P1 → R2?

P1 P2

R1

R2

P3
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problem: this approach may incorrectly 
predict imminent deadlock when resources 
with multiple instances are involved
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requires a more general definition of “safe state”

P1 P2

R1

R2

P3
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¶ Banker’s Algorithm

(by Edsger Dijkstra)
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basic idea:
- define how to recognize system “safety”
- whenever a resource request arrives:

- simulate allocation & check state
- allocate iff simulated state is safe
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some assumptions we need to make:
1. a non-blocked process holding a resource 

will eventually release it
2. it is known a priori how many instances of 

each resource a given process needs
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- ere exists a sequence <P1, P2, ..., Pn>, 
where each Pk can complete with:
- currently available (free) resources
- resources held by P1...Pk-1

Safe State
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Processes P1…Pn, Resources R1…Rm:
 available[j] = num of Rj available
 max[i][j] = max num of Rj required by Pi

 allocated[i][j] = num of Rj allocated to Pi

 need[i][j] = max[i][j] - allocated[i][j]

Data Structures
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1. finish[i] ← false ∀ i ∈ 1…n
work ← available

2. Find i : finish[i] = false & need[i][j] ≤ work[j] ∀ j 
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true
Go to 2.

4. Safe state iff finish[i] = true ∀ i

Safety Algorithm

57



incoming request represented by request array
 request[j] = num of resource Rj requested
(a process can require multiple instances of 

more than one resource at a time)
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1. If request[j] ≤ need[k][j] ∀ j, continue, else error

2. If request[j] ≤ available[j] ∀ j, continue, else block
3. Run safety algorithm with:

- available ← available - request
- allocated[k] ← allocated[k] + request
- need[k] ← need[k] - request

Processing Request from Pk:
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if safety algorithm fails, do not allocate, even if 
resources are available!

— either deny request or block caller
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A B C

P0

P1

P2

P3

P4

7 5 3

3 2 2

9 0 2

2 2 2

4 3 3

A B C

0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Allocated

A B C

3 3 2

Available

A B C

7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

NeedMax

• Safe state: <P1, P3, P0, P2, P4>
• P3 requests <0, 0, 1>
• P0 requests <0, 3, 0>

3 resources: A (10), B (5), C (7)
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¶ Banker’s algorithm discussion
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1. Efficiency?
- how fast is it?
- how oen is it run?
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1. finish[i] ← false ∀ i ∈ 1…n
work ← available

2. Find i : finish[i] = false & need[i][j] ≤ work[j] ∀ j 
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true
Go to 2.

4. Safe state iff finish[i] = true ∀ i

for up to N processes, check M resources

loop for N processes

O(N∙N∙M) = O(N2∙M)
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how oen to run?
- need to run on every resource request
- can’t relax this, otherwise system might 

become unsafe!
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2. Assumption #1: processes will eventually 
release resources
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- assuming well-behaved processes
- not 100% realistic, but what else to do?
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3. Assumption #2: a priori knowledge of max 
resource requirements
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- highly unrealistic
- process resource needs are dynamic!
- without this assumption, deadlock 

prevention becomes much harder…
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¶ Aside: decision problems, 
 complexity theory 
 & the halting problem
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a decision problem

input

decision algorithm

yes no
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e.g.,  is X evenly divisible by Y? 
 is N a prime number?
 does string S contain pattern P?
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a lot of important problems can be reworded 
as decision problems:
e.g.,  traveling salesman problem (find the 
 shortest tour through a graph) 
  ⇒ is there a tour shorter than L?
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complexity theory classifies decision problems 
by their difficulty, and draws relationships 
between those problems & classes 
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class P: solutions to these problems can be 
found in polynomial time (e.g., O(N2))
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class NP: solutions to these problems can be 
verified in polynomial time

— but finding solutions may be harder!
(i.e., superpolynomial)
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big open problem in CS:
P = NP?
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why is this important?
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all problems in NP can be reduced to another 
problem in the NP-complete class,

and all problems in NP-complete can be 
reduced to each other)
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if you can prove that any NP-complete problem 
is in P, then all NP problems are in P!

(more motivation: you also win $1M)
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if you can prove P ≠ NP, we can stop looking for 
fast solutions to many hard problems

(motivation: you still win $1M)
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a decision problem

input

decision algorithm

yes no
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deadlock prevention

resources available, 
request & allocations,

running programs

will the system 
deadlock?

yes no
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the halting problem

description of a 
program and its inputs

will the system halt 
(or run forever)?

yes no
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e.g., write the function: 

halt(f)  !  bool
- return true if  f will halt
- return false otherwise
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def  halt(f):
        #  your  code  here

def  loop_forever():
        while  True:  pass

def  just_return():
        return  True

halt(loop_forever)    #  =>  False

halt(just_return)      #  =>  True
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#$^%&#@!!!

def  halt(f):
        #  your  code  here

def  gotcha():
        if  halt(gotcha):
                loop_forever()
        else:
                just_return()

halt(gotcha)
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proof by contradiction: 
the halting problem is undecidable
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generally speaking, deadlock prediction can be 
reduced to the halting problem
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i.e., determining if a system is deadlocked is, in 
general, proably impossible!!
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:’-(
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§ Deadlock Detection
& Recovery
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¶ Basic approach: cycle detection
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e.g.,  Tarjan’s strongly connected components 
 algorithm; O(|V|+|E|)
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need only run on mutex resources and 
“involved” processes

… still, would be nice to reduce the 
size of the resource allocation graph
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actual resources involved are unimportant — 
only care about relationships between processes
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P1 P2 P3

P5

P4

Resource Allocation Graph
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P1 P2 P3

P4

P5

“Wait-for” Graph
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Substantial optimization!

P1 P2 P3

P5

P4

P1 P2 P3

P4

P5
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… but not very useful when we have multi-
instance resources (false positives are likely)
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¶ Deadlock detection algorithm
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important: do away with requirement  of
a priori resource need declarations
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new assumption: processes can complete with
current allocation + all pending requests
i.e., no future requests

unrealistic! (but we have no crystal ball)
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keep track of all pending requests in:
 request[i][j] = num of Rj requested by Pi
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1. finish[i] ← all_nil?(allocated[i]) ∀ i ∈ 1…n
work ← available

2. Find i: finish[i] = false & request[i][j] ≤ work[j] ∀ j 
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true
Go to 2.

4. If finish[i] ≠ true ∀ i, system is deadlocked.  

Detection algorithm ignore processes 
that aren’t allocated 
anything
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A B C

P0

P1

P2

P3

P4

0 1 0

2 0 0

3 0 3

2 1 1

0 0 2

A B C

0 0 0

2 0 2

0 0 0

1 0 0

0 0 2

Allocated Request

A B C

0 0 0

Available

3 resources: A (7), B (2), C (6)

• Not deadlocked: <P0, P2, P1, P3, P4>
• P2 requests <0, 0, 1>
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¶ Discussion

108



1. Speed?
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1. finish[i] ← all_nil?(allocated[i]) ∀ i ∈ 1…n
work ← available

2. Find i: finish[i] = false & request[i][j] ≤ work[j] ∀ j 
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true
Go to 2.

4. If finish[i] ≠ true ∀ i, system is deadlocked.

Still O(N∙N∙M) = O(N2∙M)
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2. When to run?
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… as seldom as possible!
tradeoff: the longer we wait between checks, 
the messier resulting deadlocks might be
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3. Recovery?
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One or more processes must release resources:
- via forced termination
- resource preemption
- system rollback

cool, but how?
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Resource preemption only possible with 
certain types of resources

- no intermediate state
- can be taken away and returned (while 

blocking process)
- e.g., mapped VM page
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Rollback requires process checkpointing:
- periodically autosave/reload process state
- cost depends on process complexity
- easier for special-purpose systems
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How many to terminate/preempt/rollback?
- at least one for each disjoint cycle

- non-trivial to determine how many cycles 
and which processes!
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Selection criteria (who to kill) = minimize cost
- # processes
- completed run-time
- # resources held / needed
- arbitrary priority (no killing system 

processes!)
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•
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Dealing with deadlock is hard!
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Moral of this and the concurrency material:
- be careful with concurrent resource sharing
- use concurrency mechanisms that avoid 

explicit locking whenever possible!
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