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Basic Queueing Theory
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- Queueing theory? Huh?

- Probability refresher / Crash course

- Queueing theory & Kendall’s notation

- Mean value analysis of  basic queues

Agenda
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§Queueing Theory? 
Huh?
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Remember, we started our discussion of  
scheduling at a high level — “policy”

- mostly described heuristics-based 
(i.e., hand-wavy) approaches

- makes it very important to measure 
and evaluate scheduling systems!
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assignment 2 treads middle ground — 
evaluation based on simulation:

- some basis in reality, but hard to 
predict real workloads

- no mathematical/computational rigor
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to obtain empirical data, should examine a 
“live” operating system’s scheduler

— low-level (coming later!)
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to exercise rigor, should leverage some 
branch of  mathematics well-suited to 
analyzing scheduling systems

… queueing theory!
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queueing theory models wait queues 
using (mostly) probabilistic techniques

- e.g., arrival/service rate distributions

- supports mathematical analysis & rigor
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wide application:

- checkout lines

- telecom switch

- traffic light system

- network quality of  service
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we’ll barely scratch the surface — queueing 
theory is an area ripe for research — but 
you’ll see some basic applications

- will also help explain underpinnings of  
simulators used for assignment 2!
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§Probability refresher
/ Crash course
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Probability theory = quantitative analysis 
of  random phenomena

- assign a weighted probability to every 
event in a sample space (Ω)

- use these probability distributions to 
better understand the behavior of  the 
phenomena
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Core abstraction: random variable

- a R.V. is a function that maps the sample 
space onto numeric values (e.g., X:Ω→ℝ)

- discrete R.V.s map to a countable set

- continuous R.V.s map events onto an 
uncountable set (e.g., real-valued)
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⌦ = {TT, TH,HT,HH}

X(!) =

8
>><

>>:

0, if ! = TT
1, if ! = TH
2, if ! = HT
3, if ! = HH

E.g., double coin toss (discrete event space)

14



Computer 
ScienceScience

Typically interested in a variety of  statistics of  
random variables (and corresponding events):

- probability of  event n: P(X=n) (or p(n))

- expected value (mean): E(X)

- variance: σ2(X); standard deviation: σ(X)

- coefficient of  variance: CX=σ(X)/E(X)
(unitless measure)
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P (X = n) =
1

6
, n = 1, 2, 3, 4, 5, 6

e.g., (6-sided) dice roll

— probability mass function

Note:
X

n

P (X = n) = 1

E(X) =
X

n

n · p(n) = 3.5
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F

X

(n) = P (X  n) =
X

xn

p(x)

e.g., (6-sided) dice roll
cumulative distribution function (CDF):

FX(3) = P (X  3)e.g.,

=
1

6
+

1

6
+

1

6
=

1

2
FX(6) = 1
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Many well known probability distributions are 
used to model real world phenomena

from “Brains and Careers,” by D. Keirsey
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¶ Two discrete probability distributions
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E(X) =
1� p

p
, �2(X) =

1� p

p2

P (X = n) = (1� p)np, n = 0, 1, 2, . . .

Geometric distribution

- parameter p = chance of  success in a trial

- gives probability of  n failures before success
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Poisson distribution

- gives probability of  n events occurring in 
a fixed time interval, when
- average rate λ is known, and

- each event is independent of  previous ones

P (X = n) =
�n

n!
e��, n = 0, 1, 2, . . .

E(X) = �, �2(X) = �
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¶ Two continuous probability distributions
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It doesn’t make sense to measure probability 
at a point (sample space is uncountable!)

Instead, assign probabilities to intervals:

P (aXb) =

Z b

a
f(x)dx

f  is the probability density function

P (Xx) = F (x) =

Z
x

�1
f(t)dt

F is the cumulative distribution function
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Gaussian (Normal) distribution

f(x;µ,�2) =
1

�

p
2⇡

e

�(x�µ)2

2�2

E(X) = µ, �2(X) = �2

- parameters μ (mean) and σ2 (variance)

- produces “bell curve” around μ
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Exponential distribution

f(t;µ) = µe�µt, t � 0

E(X) =
1

µ
, �2(X) =

1

µ2
, CX = 1

- parameter μ = rate

- gives probability of  time t elapsing 
between successive independent events
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Exponential distribution (continuous)

μ=0.5, μ=0.2, μ=0.1
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Important property of  the exponential distr.

— it is “memoryless”, i.e.,

P (X > t+�t |X > t) = P (X > �t) for all t,�t � 0
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e.g., Given exponential bus arrival times:

If  P(X>20min)=0.3, and you’ve already 
waited 15 minutes, how likely is it that the 
bus won’t arrive for another 20 minutes?

P(X>35 | X>15) = P(X>20) = 0.3
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Exponential vs. Gaussian arrival times
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t

Exponential (μ=0.1)
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¶ Stochastic processes
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A stochastic process is a collection of  random 
variables {Ft,t ∈T} defined on Ω

- t is typically a time parameter

- so Ft may describe how some system 
behaves over time period t
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Poisson Process; {Nt, t ≥ 0}

- Nt = number of  arrivals in [0,t ]

- Nt is Poisson distributed with param λt

- time between arrivals is exponentially 
distributed with rate 1/λ

- inherently memoryless
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- range of  Xi = state space (S ) of  the chain

Markov Chain

- next state depends only on the current state
(future is independent of  past)

- sequence of  r.v.s, X1, X2, X3, … such that:
P (Xt+1 = x |Xt = xt, Xt�1 = xt�1, . . . , X2 = x2, X1 = x1)

= P (Xt+1 = x |Xt = xt)
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sunny
(S0)

cloudy
(S1)

rainy
(S2)

0.6

0.3 0.1

0.30.5

0.4

0.3

0.30.2

e.g., P(Xt+1=sunny | Xt=rainy)
P(Xt+2=sunny | Xt=rainy)?

pij = P (Xt+1 = j |Xt = i)

= p20 = 0.3

= = 0.35p20p00 + p21p10 + p22p20

P =

0

@
p00 p01 p02
p10 p11 p12
p20 p21 p22

1

A =

0

@
0.6 0.3 0.1
0.2 0.5 0.3
0.3 0.4 0.3

1

A

“transition matrix”

38



Computer 
ScienceScience

p(2)20 =

P ⇥ P = P 2 =

0

@
0.45 0.37 0.18
0.31 0.43 0.26
0.35 0.41 0.24

1

A

p(n)ij = Pn[i][j]

= (P ⇥ P )[i][j]p(2)ij =
X

k2S

pikpkj

= 0.35p20p00 + p21p10 + p22p20
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P 2=

0

@
0.45 0.37 0.18
0.31 0.43 0.26
0.35 0.41 0.24

1

A P 3=

0

@
0.398 0.392 0.210
0.350 0.412 0.238
0.364 0.406 0.230

1

A

P 5=

0

@
0.374 0.402 0.224
0.369 0.404 0.227
0.370 0.404 0.226

1

A

P 4=

0

@
0.380 0.399 0.220
0.364 0.406 0.230
0.369 0.404 0.227

1

A

P 6=

0

@
0.372 0.403 0.225
0.370 0.404 0.226
0.371 0.403 0.226

1

A P 7=

0

@
0.371 0.403 0.226
0.371 0.403 0.226
0.371 0.403 0.226

1

A

all rows are equal to the same vector , where⇡

⇡ = ⇡ ⇥ P and
X

i2S

⇡i = 1

converges to a steady-state distributionlim
k!1

P k
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sunny
(S0)

cloudy
(S1)

rainy
(S2)

0.6

0.3 0.1

0.30.5

0.4

0.3

0.30.2

independent of  starting state:

sunny cloudy rainy

P(Xt=sunny) = 0.371
i.e., fraction of  sunny days ≈ 37%

⇡ = [0.371 0.403 0.226]
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sunny
(S0)

cloudy
(S1)

rainy
(S2)

0.6

0.3 0.1

0.30.5

0.4

0.3

0.30.2

⇡ = [0.371 0.403 0.226]

Also note that, for every state,
rate of  flow out = rate of  flow in

e.g., for S0


 rate out
= (0.371)(0.1 + 0.3) 

 
 = 0.148
	 rate in	 = (0.403)(0.2) + (0.226)(0.3)
	 	 = 0.148

i.e., the system is in equilibrium
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§Queueing theory
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queueing system

wait queue server

arriving
customers

leaving
customers

Basic model:
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· = T (sojourn / turnaround time)
#	= L (total customers)

· = Tq (wait time)
#	= Lq (waiting customers)

λ μ
(arrival rate)

(service rate)

· = Ts 
(service time)
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typically, queue characteristics vary over time… 

goal: given distributions for λ, μ, derive the rest!

e.g.,	distribution of  Tq, T

	 distribution of  Lq, L


 distribution of  busy periods (i.e., when 

 server is continuously busy)
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P (Lq = 0)

P (Lq � x)

P (T  t)

E(Tq), E(T )

E(Lq), E(L)

given distributions, can compute things like:

(queue is empty)

(x or more in line)

(sojourn time threshold)

(avg. wait, sojourn time)
(avg. queue/system size)
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interested in limiting distribution;

i.e., after system reaches equilibrium

— over a long period of  time, # customers 

 leaving system = # customers entering
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λ μ

require ⇢ =
�

µ
, “intensity” < 1

is the utilization for a stable system⇢

queue cannot grow unboundedly!
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¶ Little’s Law
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Little’s Law: E(L) = �E(T )

# customers in system = arrival rate sojourn time×

E(Lq) = �E(Tq)applied to queue:

⇢ = �E(Ts)applied to server:
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† 
Little’s Law does not assume anything
	 about arrival/service distributions or any
	 other server characteristics!

 (but requires that E(L), E(T), λ be bounded)
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e.g., 35th St. Jimmy John’s:
12 customers arrive per hour,
Average time spent in store = 15 minutes.

Average # customers in store?
12

hour

⇥ 1 hour

60 min

⇥ 15 min = 3
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e.g., Customer appreciation day!
100 customers arrive per hour,
Average line length = 15

Average wait time?

15⇥ 1 hour

100

= 0.4 hour = 9 min
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e.g., Packet switching system with 2 inputs:
λ1=200 packets/s, λ2=150 packets/s,
On average 2,500 packets in system.

Mean packet delay?

λ1

λ2

E(T ) =
E(L)

�1 + �2
=

2, 500

200 + 150
⇡ 7.1s
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¶ Kendall’s Notation
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A/S/c/k/n/d

A : interarrival time distribution
S : service time distribution
c : number of  servers
k : buffer size (default=∞)
n : customer population size (default=∞) 
d : queueing discipline (default=FCFS)
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Arrival/Service distributions:

D : Deterministic
M : Markovian (Memoryless)

Geom : Geometric
G : General (unknown/arbitrary)
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Favorite: Markovian (Exponential)

- combination of  multiple independent 
distributions ⇒ exponential distribution

- when distribution is unknown, exp is a fair 
compromise: medium variability (CX=1)

- it really simplifies the math!
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¶ M/M/1 queueing system
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M/M/1 =

- Poisson arrival process

- Exponential service times

- 1 server

-∞ buffer length

-∞ population

- FCFS queue discipline

61



Computer 
ScienceScience

λ μ

i.e., queueing system above with

 exponential arrival rate λ,

 exponential service rate μ
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L (# of  customers in system) can be used
to describe the state of  the system.

λ and μ are rates of  flow between each state

0 1 2 3 ...

λ

μ

λ

μ

λ

μ

λ

μ

model as a Markov chain:
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0 1 2 3 ...

λ

μ

λ

μ

λ

μ

λ

μ

is probability of  L=n at time t

want the limiting distribution (i.e., at equilibrium):

P (Lt = n)

pn = lim
t!1

P (Lt = n |L0 = i), i = 0, 1, 2, . . .
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0 1 2 3 ...

λ

μ

λ

μ

λ

μ

λ

μ

“balance” equations (apply at equilibrium):

�p0 = µp1

(�+ µ)pn = �pn�1 + µpn+1
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1X

n=0

pn = 1

�p0 = µp1

(�+ µ)pn = �pn�1 + µpn+1

0 1 2 3 ...

λ

μ

λ

μ

λ

μ

λ

μ

together with

can derive distribution of  L

,
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but we will limit ourselves to
mean value analysis
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P (Lq = 0)

P (Lq � x)

P (T  t)

E(Tq), E(T )

E(Lq), E(L)

don’t really need the
distributions to compute
these mean values … 
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Big help: PASTA property

“Poisson Arrivals See Time Averages”

i.e., arriving customers in a Poisson process see,
on average, the same number of  customers  in the
system as predicted by the steady-state average
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E(L) = 5 people in store

- i.e., to the outside observer, there are 5 
people in the store on average

- given Poisson arrivals, new customers on 
average also see 5 people in the store
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not true in general!

consider deterministic system:

- arrival times = 1, 3, 5, 7, … 

- service time = 1 (constant)

- E(L) = 1/2

but arriving customers always see 0 in store!
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E(Tq) = E(Lq)E(Ts) + ⇢E(Tr)

E(Tq)� �E(Tq)E(Ts) = ⇢E(Tr)

E(Tq)(1� �E(Ts)) = ⇢E(Tr)

E(Tq) =
⇢E(Tr)

1� �E(Ts)

=
⇢E(Tr)

1� ⇢

Start analysis with mean wait time: E(Tq)
time for waiting
customers ahead 

of  me to be served
E(Tq) =

if  the server is busy, 
the residual service time

of  customer in service
+

= �E(Tq)E(Ts) + ⇢E(Tr)

(by Little’s Law)

Pollaczek-Khinchin formula
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E(Tr)?
consider deterministic case:
- if  mean service time = 1 min, and we arrive
to find server occupied, E(Tr) = ?

- Ans: 30 sec (E(Ts)/2)
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E(Tr)?
what about Poisson arrival process?
- by PASTA, new arrivals sees average!
- i.e., E(Tr) = E(Ts)
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M/M/1 mean value formulae:

E(Tr) = E(Ts) =
1

µ

E(Tq) =
⇢E(Tr)

1� ⇢
=

⇢

µ(1� ⇢)

E(T ) = E(Tq) + E(Ts)

=
⇢

µ(1� ⇢)
+

1

µ
=

1

µ(1� ⇢)

E(L) = �E(T )

=
�

µ(1� ⇢)
=

⇢

1� ⇢
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e.g., Suppose a network server receives 40 requests per second, 
and the average service time is 20ms. Assuming requests are 
exponentially distributed:

1.What is the average server utilization?

2.What is the average time spent in the server’s queue?

3.What is the average turnaround time for a request?

E(L) = �E(T )
Little’s Law: Mean wait time:

E(Tq) =
⇢

µ(1� ⇢)
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� = 40/s, E(Ts) = 20ms = 0.02sGiven:

E(Tq) =
0.02⇥ 0.8

1� 0.8
= 0.08s = 80ms

Mean wait time:

E(T ) = E(Tq) + E(Ts) = 80ms + 20ms = 100ms
Mean sojourn time:

⇢, E(Tq), E(T )Find:

⇢ = �E(Ts) = 40⇥ 0.02 = 0.8
Utilization:
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e.g., Suppose we upgrade the server and lower mean service 
time from 20ms to 15ms. By how much does this improve 
turnaround time? (Arrival rate still = 40/s)

⇢ = 40⇥ 0.015 = 0.6

E(T ) =
15ms

1� 0.6
= 37.5ms

100� 37.5

100
= 62.5% improvement!

20� 15

20
= 25% decrease in service time
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e.g., A new cafeteria has just opened on campus, and is set up to 
service, on average, 2 students/minute. Students are only starting to 
trickle in, but the manager has already decided that when the average 
time needed for them to get their food approaches 5 minutes, capacity 
will be increased. Assuming a M/M/1 system:

1. What would the mean arrival rate need to be for the manager to 
increase capacity?

2. How many students would be waiting for service at this point?

E(T ) =
1

µ(1� ⇢)
E(L) = �E(T )
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Given:
Find: �, E(Lq)

µ = 2/min, E(T ) ! 5min

5 =
1

µ� �
) � = µ� 1

5

E(T ) =
1

µ� �

= 1.8/min

E(Tq) = E(T )� E(Ts) = 5� 1

2
= 4.5

E(Lq) = �E(Tq) = 1.8⇥ 4.5 = 8.1
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e.g., Potbelly's is getting ready to open a new store at the 
MTCC, and is expecting approximately 8 students to 
arrive per minute during the lunch rush. If  they want to 
guarantee that no more than 10 students, on average, 
are waiting in line to get serviced, how quickly must they 
be able to take and complete orders?

E(L) = �E(T )
Little’s Law: Mean wait time:

E(Tq) =
⇢

µ(1� ⇢)
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Given: � = 8 E(Lq)  10, want
Find: µ

1.25 =
�

µ2(1� ⇢)
=

�

µ2 � µ�

µ2 � 8µ� 6.4 = 0

E(Tq) =
E(Lq)

�
=

10

8
= 1.25 =

⇢

µ(1� ⇢)
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¶ M/G/1 queueing system
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Arbitrary (General) service distribution, but:

- Can assume stable system (ρ<1)

- Little’s Law still applies

- Still have PASTA!
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E(Tq) =
⇢E(Tr)

1� ⇢

E(Tr) depends on mean and variance of  service times 

for exponential, C2
Ts

= 1, so E(Tr) =
1 + 1

2

· E(Ts) = E(Ts)

for deterministic, C2
Ts

= 0, so E(Tr) =
0 + 1

2

· E(Ts) =
E(Ts)

2

Intuition:	larger variance means that residual time is a 
	 bigger fraction of  the mean

E(Tr) =
�2(Ts) + E(Ts)2

2E(Ts)
=

C2
Ts

+ 1

2
· E(Ts)
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e.g., A print shop has 4 clients, each of  which sends in a 
job every half  hour on average, distributed 
exponentially. It takes an average of  6 minutes to print 
each job (there is one printer), and the service 
distribution can be described with C2=1.5.

1. How many jobs are, on average, waiting?

2. What is the average job turnaround time?
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� = 4⇥ 2/hour = 8/hour

E(Ts) = 6 min = 0.1 hour

E(Tq) =
⇢

1� ⇢
·
C2

Ts
+ 1

2
· E(Ts)

E(Lq) = �E(Tq) = 8⇥ 0.5 = 4

E(T ) = E(Tq) + E(Ts) = 0.6 hour = 36 min

=

0.8

0.2
⇥ 2.5

2

⇥ 0.1 = 0.5 hour

C2
Ts

= 1.5

Given:

⇢ = 8⇥ 0.1 = 0.8

E(Lq), E(T )Find:
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