
CS 450: Operating Systems
Michael Saelee <lee@iit.edu>

Scheduling

1

Computer
ScienceScience

§Overview

2

Computer
ScienceScience

scheduling: policies & mechanisms

 used to allocate a resource to some

 set of entities

3

Computer
ScienceScience

resource & entities: CPU & processes

other possibilities:

- resources: memory, I/O bus/devices

- entities: threads, users, groups

4

Computer
ScienceScience

policy: high-level “what”

- aka scheduling disciplines

mechanism: low-level “how”

- e.g., interrupts, context switch

5

Computer
ScienceScience

(we’ll start with policy first)

6

Computer
ScienceScience

essential idea:

- CPU(s) are a limited resource

- efficiently allow for time-sharing of
CPU(s) amongst multiple processes

- enables concurrency on a single CPU

7

Computer
ScienceScience

at a high level (policy), only concern
ourselves with macro process state

one of running, ready, or blocked

8

Computer
ScienceScience

	running 	= 	consuming CPU

 ready
=
“runnable”, but not running

blocked
=
not runnable

 (e.g., waiting for I/O)

9

Computer
ScienceScience

Ready

Running

Blocked

I/O request
(trap/syscall)

scheduled

I/O completion

creation

completion

Ready Blocked

swap in/out swap in/out

preemption

10

Computer
ScienceScience

preemptive scheduling

☑ running → ready transition

11

Computer
ScienceScience

non-preemptive scheduling

☒ running → ready transition

	 i.e., not = batch!

12

Computer
ScienceScience

domain of the “swapper” — separate
from the CPU scheduler

- frequency in seconds vs. ms

- ignore for now

Ready Blocked

swap in/out swap in/out

13

Computer
ScienceScience

Ready

Running
scheduled

convenient to envision a ready queue/set

scheduling policy is used to select the next
running process from the ready queue

14

Computer
ScienceScience

policies vary by:

1. preemptive vs. non-preemptive

2. factors used in selecting a process

3. goals; i.e., why are we selecting a
given process?

15

Computer
ScienceScience

scheduling goals are usually predicated on
optimizing certain scheduling metrics

— can be provable or based on heuristics

16

Computer
ScienceScience

§Scheduling Metrics

17

Computer
ScienceScience

metrics we’ll be concerned with:

- turnaround time

- wait time

- response time

- throughput

- utilization

18

Computer
ScienceScience

turnaround time:

Tturnaround = Tcompletion - Tcreation

i.e., total time to complete process

19

Computer
ScienceScience

turnaround time depends on much more
than the scheduling discipline!

- process runtime

- process I/O processing time

- how many CPUs available

- how many other processes need to run

20

Computer
ScienceScience

wait time: time spent in ready queue

i.e., how long does the scheduler force a
runnable process to wait for a CPU

- better gauge of scheduler’s effectiveness

21

Computer
ScienceScience

turnaround & wait time are measured
over the course of an entire process —
sometimes refer to as the “job”

- not a very useful metric for interactive
processes

- which typically alternate between
CPU & I/O bursts, indefinitely

22

Computer
ScienceScience

5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

“bursty” execution

23

Computer
ScienceScience

5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Histogram of CPUHistogram of CPU--burst Timesburst Times

burst length histogram

24

Computer
ScienceScience

can take measurements per-burst

i.e., from first entry into ready queue

 to completion or transition to blocked

- burst turnaround time, aka response time

- burst wait time

25

Computer
ScienceScience

throughput:

 number of completed jobs or bursts

 per time unit (e.g., N/sec)

26

Computer
ScienceScience

utilization:

	 % of time CPU is busy running jobs

- note: CPU can be idle if there are no
active jobs or if all jobs are blocked!

27

Computer
ScienceScience

another (subjective) metric: fairness

- what does this mean?

- how to measure it?

- is it useful?

28

Computer
ScienceScience

§Scheduling Policies

29

Computer
ScienceScience

1. First Come First Served

30

Computer
ScienceScience

Process Arrival Time Burst Time

P1 0 24

P2 0 3

P3 0 3

Wait times:	 P1 = 0, P2 = 24, P3 = 27
Average:	 (0+24+27)/3 = 17

P1 P2 P3

24 27 300 “Gantt chart”

31

Convoy Effect
32

Computer
ScienceScience

Process Arrival Time Burst Time

P3 0 3

P2 0 3

P1 0 24

P3 P2 P1

3 6 300

Wait times:	 P1 = 6, P2 = 3, P3 = 0
Average:	 (6+3+0)/3 = 3

33

Computer
ScienceScience

2. Shortest Job First

34

Computer
ScienceScience

0

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

Non-preemptive SJF

35

Computer
ScienceScience

Wait times:	P1 = 0, P2 = 6, P3 = 3, P4=7
Average:	 (0+6+3+7)/4 = 4

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

0

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

36

Computer
ScienceScience

can we do better?

37

Computer
ScienceScience

Yes! (theoretically): Preemptive SJF

a.k.a. Shortest-Remaining-Time-First

38

Computer
ScienceScience

P1 P3 P4

0

P2 P2 P1

P1 waits

P2 waits

P4 waits

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

39

Computer
ScienceScience

P1 P3 P4

0

P2 P2 P1

P1 waits

P2 waits

P4 waits

Wait times: 	P1 = 9, P2 = 1, P3 = 0, P4 = 2
Average:	 (9+1+0+2)/4 = 3

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

40

Computer
ScienceScience

SJF/SRTF are greedy algorithms;

	 i.e., they always select the local optima

greedy algorithms don’t always produce
globally optimal results (e.g., hill-climbing)

41

Computer
ScienceScience

consider 4 jobs arriving at t=0, with burst
lengths t0, t1, t2, t3

avg. wait time if scheduled in order?

=
3t0 + 2t1 + t2

4

42

Computer
ScienceScience

— a weighted average; clearly minimized by
running shortest jobs first.

I.e., SJF/PSJF are provably optimal w.r.t.
wait time!

=
3t0 + 2t1 + t2

4

43

Computer
ScienceScience

at what cost?

 … potential starvation!

 (possible for both non-preemptive &

 preemptive variants)

44

Computer
ScienceScience

also, we’ve been making two simplifying
assumptions:

1. context switch time = 0

2. burst lengths are known in advance

45

Computer
ScienceScience

(1) will be dealt with later;

(2) is a serious problem!

46

Computer
ScienceScience

typically predict future burst lengths based
on past job behavior

- simple moving average

- exponentially weighted moving
average (EMA)

47

Computer
ScienceScience

Observed:
 ρn-1

Estimated:
 σn-1

Weight (α):
 0 ≤ α ≤ 1

EMA:
 σn = α⋅ρn-1 + (1–α)⋅σn-1

48

Actual Avg (3) Error EMA Error
4 5.00 1.00 5.00 1.00 EMA Alpha:EMA Alpha: 0.2
5 4.00 1.00 4.80 0.20
5 4.50 0.50 4.84 0.16
6 4.67 1.33 4.87 1.13
13 5.33 7.67 5.10 7.90
12 8.00 4.00 6.68 5.32
11 10.33 0.67 7.74 3.26
6 12.00 6.00 8.39 2.39
7 9.67 2.67 7.92 0.92
5 8.00 3.00 7.73 2.73

Avg err: 2.78 2.50

0

2.6

5.2

7.8

10.4

13.0

Actual Avg (3) EMA

49

Computer
ScienceScience

how to deal with starvation?

one way: enforce fairness

50

Computer
ScienceScience

3. Round Robin: the “fairest” of them all

- FIFO queue

- each job runs for max time quantum

- if unfinished, re-enter queue at back

51

Computer
ScienceScience

Given time quantum q and n jobs:

- max wait time = q ∙ (n – 1)

- each job receives 1/n timeshare

52

Computer
ScienceScience

P1 waits

P2 waits

P1 waits

P2 waits

P3 waits

P4 waits P4 waits

P1 P3

0

P2 P1 P4 P2 P1 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Round Robin, q=3

53

Computer
ScienceScience

P1 waits

P2 waits

P1 waits

P2 waits

P3 waits

P4 waits P4 waits

P1 P3

0

P2 P1 P4 P2 P1 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Wait times: 	P1 = 8, P2 = 8, P3 = 5, P4 = 7
Average:	 (8+8+5+7)/4 = 7

54

Computer
ScienceScience

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Avg. Turnaround Avg. Wait Time

RR q=1 9.75 5.75

RR q=3 11 7

RR q=4 9 5

RR q=7 8.75 4.75

55

Computer
ScienceScience

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Avg. Turnaround Avg. Wait Time

RR q=1 20.25 13.25

RR q=3 16.25 11.25

RR q=4 11.50 7.25

RR q=7 10.25 6.25

(CST=1)

56

Computer
ScienceScience

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Throughput Utilization

RR q=1 0.125 0.500

RR q=3 0.167 0.667

RR q=4 0.190 0.762

RR q=7 0.200 0.800

(CST=1)

57

Computer
ScienceScience

q large ⇒ FIFO

q small ⇒ big CST overhead

58

Computer
ScienceScience

generally, try to tune q to help tune
responsiveness (i.e., of interactive processes)

may use:

- predetermined max response threshold

- median of EMAs

- process profiling

59

Computer
ScienceScience

RR permits CPU-hungry jobs to run
periodically, but prevents them from
monopolizing the system (compare to
FCFS and SJF)

… but also introduces inflexible systemic

 overhead: constant context switching

60

Computer
ScienceScience

Fairness is overrated!

61

Computer
ScienceScience

Can exercise more fine-grained control by
introducing a system of arbitrary priorities

- computed and assigned to jobs
dynamically by scheduler

- highest (current) priority goes next

62

Computer
ScienceScience

SJF is an example of a priority scheduler!

- jobs are weighted using a burst-length
prediction algorithm (e.g., EMA)

- priorities may vary over job lifetimes

63

Computer
ScienceScience

Recall: SJF is prone to starvation

Common issue for priority schedulers

- combat with priority aging

64

Computer
ScienceScience

4. Highest Penalty Ratio Next

- example of a priority scheduler that
uses aging to avoid starvation

65

Computer
ScienceScience

Two statistics maintained for each job:

1. total CPU execution time, t

2. “wall clock” age, T

66

Computer
ScienceScience

Priority, “penalty ratio” = T / t

- ∞ when job is first ready

- decreases as job receives CPU time

67

Computer
ScienceScience

HPRN in practice would incur too many
context switches (due to very short bursts)

— likely institute minimum burst quanta

68

Computer
ScienceScience

5. Selfish RR

- example of a more sophisticated
priority based scheduling policy

69

Computer
ScienceScience

priority ↑ α

priority ↑ β

β = 0 : RR

β ≥ (α ≠ 0) : FCFS

β > (α = 0) : RR in batches

α > β > 0 : “Selfish” (ageist) RR

active (RR)
CPU

holding
arriving

70

Computer
ScienceScience

Another problem (on top of starvation)
possibly created by priority-based
scheduling policies: priority inversion

71

Computer
ScienceScience

Process Priority State
P1 High Ready
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

72

Computer
ScienceScience

request
all

oc
ate

d

Process Priority State
P1 High Running
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

Resource

P1 P2 P4P3

73

Computer
ScienceScience

Process Priority State
P1 High Blocked
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)

74

Computer
ScienceScience

Process Priority State
P1 High Blocked
P2 Mid Running
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)

75

Computer
ScienceScience

request

P1 P4

Resource

P3

all
oc

ate
d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Running
P4 Low Ready

(mutually exclusive allocation)

76

Computer
ScienceScience

request

P1 P4

Resource
all

oc
ate

d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Running

(mutually exclusive allocation)

77

Computer
ScienceScience

request

P1

Resource

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)

78

Computer
ScienceScience

P1

Resource
allocated

Process Priority State
P1 High Ready
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)

79

Computer
ScienceScience

P1

Resource
allocated

(mutually exclusive allocation)

Process Priority State
P1 High Running
P2 Mid Done
P3 Mid Done
P4 Low Done

80

Computer
ScienceScience

priority inversion: a high priority job
effectively takes on the priority of a lower-
level one that holds a required resource

81

Computer
ScienceScience

high profile case study: NASA Pathfinder

- spacecraft developed a recurring
system failure/reset

- occurred after deploying data-
gathering robot to surface of Mars

82

Computer
ScienceScience

culprits:

- flood of meteorological data

- low priority of related job: ASI/MET

- a shared, mutually exclusive resource
(semaphore guarding an IPC pipe)

83

Computer
ScienceScience

high priority job (for data aggregation &
distribution) — bc_dist — required pipe

- but always held by ASI/MET

- in turn kept from running by various
mid-priority jobs

84

Computer
ScienceScience

scheduling job determined that bc_dist
couldn’t complete per hard deadline

- declared error resulting in system reset!

- re-produced in lab after 18-hours of
simulating spacecraft activities

85

Computer
ScienceScience

fix: priority inheritance

- job that blocks a higher priority job
will inherit the latter’s priority

- e.g., run ASI/MET at bc_dist’s
priority until resource is released

86

Computer
ScienceScience

how?

- enabling priority inheritance via
semaphores (in vxWorks OS)

- (why wasn’t it on by default?)

- prescient remote (!) tracing & patching
facilities built in to system

87

Computer
ScienceScience

why did NASA not foresee this?

“Our before launch testing was limited to the “best case” high
data rates and science activities… We did not expect nor test
the "better than we could have ever imagined" case.”

- Glenn Reeves
Software team lead

88

Computer
ScienceScience

takeaways:

- scheduling bugs are hard to predict,
track down, and fix

- priority inheritance provides a
“solution” for priority inversion

- scheduling is rocket science!

89

Computer
ScienceScience

questions:

- w.r.t. priority inheritance:

- pros/cons?

- how to implement?

- w.r.t. priority inversion:

- detection? how else to “fix”?

- effect on non-real-time OS?

90

Computer
ScienceScience

Even with the fine-grained control offered
by a priority scheduler, hard to impose
different sets of goals on groups of jobs

E.g., top-priority for system jobs, RR for
interactive jobs, FCFS for batch jobs

91

Computer
ScienceScience

6. Multi-Level Queue (MLQ)

- disjoint ready queues

- separate schedulers/policies for each

92

Computer
ScienceScience

Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal

93

Computer
ScienceScience

requires queue arbitration strategy in place

94

Computer
ScienceScience

Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal

de
cr

ea
si

ng
 p

ri
or

ity
approach 1: prioritize top, non-empty queue

95

Computer
ScienceScience

Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal

approach 2: aggregate time slices

30%

15%

50%

5%

96

Computer
ScienceScience

what processes go in which queues?

- self-assigned

- e.g., UNIX “nice” value

- “profiling” based on initial burst(s)

- CPU, I/O burst length

- e.g., short, intermittent CPU bursts
⇒ classify as interactive job

97

Computer
ScienceScience

classification issue: what if process
characteristics change dynamically?

- e.g., photo editor: tool selection
(interactive) ➞ apply filter (CPU
hungry) ➞ simple edits (interactive)

98

Computer
ScienceScience

7. Multi-Level Feedback Queue

- supports movement between queues
after initial assignment

- based on ongoing job accounting

99

Computer
ScienceScience

RR (q=2)

RR (q=8)

RR (q=4)

e.g., 3 RR queues with different q

assignment based on q/burst-length fit

100

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

P1

P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

101

Computer
ScienceScience

RR (q=2)

P1 RR (q=4)

RR (q=8)

P1

0

P2

P2

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

102

Computer
ScienceScience

RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1

0

P2

P3

P3

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

103

Computer
ScienceScience

RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1 P3

0

P2

P4

P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

104

Computer
ScienceScience

RR (q=2)

P4 P2 P1 RR (q=4)

RR (q=8)

P1 P3

0

P2 P4 P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

105

Computer
ScienceScience

RR (q=2)

P4 P2 RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

106

Computer
ScienceScience

RR (q=2)

P4 RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

107

Computer
ScienceScience

RR (q=2)

RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2 P4 P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

108

Computer
ScienceScience

P1 P3

0

P2 P4 P1 P2 P4 P1

Wait times: 	P1 = 9, P2 = 7, P3 = 0, P4 = 6
Average:	 (9+7+0+6)/4 = 5.5 (vs 7 for RR, q=3)

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

109

Computer
ScienceScience

- following I/O, processes return to
previously assigned queue

- when to move up?

- for RR, when burst ≤ q

110

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

111

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

Pf

Pf

112

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

113

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

114

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf

Pf Pf Pf

(I/O)

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

115

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

116

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

117

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

118

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

119

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

120

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

121

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

122

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

123

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

Pf

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

124

Computer
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

125

Computer
ScienceScience

other possible heuristics:

- multi-queue hops due to huge bursts

- exponential backoff to avoid queue hopping

- dynamic queue creation for outliers

126

Computer
ScienceScience

§Scheduler Evaluation

127

Computer
ScienceScience

i.e., how well does a given scheduling
policy perform under different loads?

	 typically, w.r.t. scheduling metrics: wait
	 time, turnaround, utilization, etc.

128

Computer
ScienceScience

n.b., numerical metrics (e.g., wait time) are
important, but may not tell the full story

 e.g., how, subjectively, does a given

 scheduler “feel” under regular load?

129

Computer
ScienceScience

1. paper & pencil computations

2. simulations with synthetic or real-world
job traces

3. mathematical models; e.g., queueing theory

4. real world testing (e.g., production OSes)

130

Computer
ScienceScience

(never fear, you’ll try your hand at all!)

131

Computer
ScienceScience

e.g., UTSA process scheduling simulator

- specify scheduling discipline and job
details in configuration file

- bursts can be defined discretely, or
using probability distributions

132

Computer
ScienceScience

output: Gantt charts & metrics

133

Computer
ScienceScience

SJF vs. PSJF vs. RR, q=10 vs. RR, q=20
processes: uniform bursts ≤ 20, CST = 1.0

Which is which?

134

