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§Overview
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scheduling: policies & mechanisms 

 used to allocate a resource to some 

 set of  entities
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resource & entities: CPU & processes

other possibilities:

- resources: memory, I/O bus/devices

- entities: threads, users, groups
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policy: high-level “what”

- aka scheduling disciplines

mechanism: low-level “how”

- e.g., interrupts, context switch
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(we’ll start with policy first)
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essential idea:

- CPU(s) are a limited resource

- efficiently allow for time-sharing of  
CPU(s) amongst multiple processes

- enables concurrency on a single CPU
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at a high level (policy), only concern 
ourselves with macro process state

one of  running, ready, or blocked
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	running 	= 	consuming CPU


 ready 
= 
“runnable”, but not running


blocked 
= 
not runnable 

 
 
 (e.g., waiting for I/O)
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Ready

Running

Blocked

I/O request
(trap/syscall)

scheduled

I/O completion

creation

completion

Ready Blocked

swap in/out swap in/out

preemption
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preemptive scheduling

☑  running → ready transition
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non-preemptive scheduling

☒  running → ready transition

	 i.e., not = batch!
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domain of  the “swapper” — separate 
from the CPU scheduler

- frequency in seconds vs. ms

- ignore for now

Ready Blocked

swap in/out swap in/out
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Ready

Running
scheduled

convenient to envision a ready queue/set

scheduling policy is used to select the next 
running process from the ready queue
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policies vary by:

1. preemptive vs. non-preemptive

2. factors used in selecting a process

3. goals; i.e., why are we selecting a 
given process?
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scheduling goals are usually predicated on 
optimizing certain scheduling metrics

— can be provable or based on heuristics
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§Scheduling Metrics
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metrics we’ll be concerned with:

- turnaround time

- wait time

- response time

- throughput

- utilization
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turnaround time:

Tturnaround = Tcompletion - Tcreation

i.e., total time to complete process
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turnaround time depends on much more 
than the scheduling discipline!

- process runtime

- process I/O processing time

- how many CPUs available

- how many other processes need to run
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wait time: time spent in ready queue

i.e., how long does the scheduler force a 
runnable process to wait for a CPU

- better gauge of  scheduler’s effectiveness
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turnaround & wait time are measured 
over the course of  an entire process — 
sometimes refer to as the “job”

- not a very useful metric for interactive 
processes

- which typically alternate between 
CPU & I/O bursts, indefinitely
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5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

“bursty” execution
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5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 2, 2005

Histogram of CPUHistogram of CPU--burst Timesburst Times

burst length histogram
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can take measurements per-burst

i.e., from first entry into ready queue 

 to completion or transition to blocked

- burst turnaround time, aka response time

- burst wait time
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throughput:


 number of  completed jobs or bursts 

 per time unit (e.g., N/sec)
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utilization:

	 % of  time CPU is busy running jobs

- note: CPU can be idle if  there are no 
active jobs or if  all jobs are blocked!
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another (subjective) metric: fairness

- what does this mean? 

- how to measure it? 

- is it useful?
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§Scheduling Policies
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1. First Come First Served
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Process Arrival Time Burst Time

P1 0 24

P2 0 3

P3 0 3

Wait times:	 P1 = 0,  P2 = 24,  P3 = 27
Average:	 (0+24+27)/3 = 17

P1 P2 P3

24 27 300 “Gantt chart”
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Convoy Effect
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Process Arrival Time Burst Time

P3 0 3

P2 0 3

P1 0 24

P3 P2 P1

3 6 300

Wait times:	 P1 = 6,  P2 = 3,  P3 = 0
Average:	 (6+3+0)/3 = 3
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2. Shortest Job First
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0

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

Non-preemptive SJF
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Wait times:	P1 = 0, P2 = 6, P3 = 3, P4=7
Average:	 (0+6+3+7)/4 = 4

P2 waits

P3 waits

P4 waits

P1 P3 P2 P4

0

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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can we do better?
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Yes! (theoretically): Preemptive SJF

a.k.a. Shortest-Remaining-Time-First
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P1 P3 P4

0

P2 P2 P1

P1 waits

P2 waits

P4 waits

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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P1 P3 P4

0

P2 P2 P1

P1 waits

P2 waits

P4 waits

Wait times: 	P1 = 9, P2 = 1, P3 = 0, P4 = 2
Average:	 (9+1+0+2)/4 = 3

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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SJF/SRTF are greedy algorithms; 

	 i.e., they always select the local optima

greedy algorithms don’t always produce 
globally optimal results (e.g., hill-climbing)
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consider 4 jobs arriving at t=0, with burst 
lengths t0, t1, t2, t3

avg. wait time if  scheduled in order?

=
3t0 + 2t1 + t2

4
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— a weighted average; clearly minimized by 
running shortest jobs first. 

I.e., SJF/PSJF are provably optimal w.r.t. 
wait time!

=
3t0 + 2t1 + t2

4
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at what cost?


 … potential starvation!


 (possible for both non-preemptive &

 preemptive variants)
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also, we’ve been making two simplifying 
assumptions:

1. context switch time = 0

2. burst lengths are known in advance
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(1) will be dealt with later;

(2) is a serious problem!
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typically predict future burst lengths based 
on past job behavior

- simple moving average

- exponentially weighted moving 
average (EMA)
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Observed:
 ρn-1

Estimated:
 σn-1

Weight (α):
 0 ≤ α ≤ 1

EMA: 
 σn = α⋅ρn-1 + (1–α)⋅σn-1
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Actual Avg (3) Error EMA Error
4 5.00 1.00 5.00 1.00 EMA Alpha:EMA Alpha: 0.2
5 4.00 1.00 4.80 0.20
5 4.50 0.50 4.84 0.16
6 4.67 1.33 4.87 1.13
13 5.33 7.67 5.10 7.90
12 8.00 4.00 6.68 5.32
11 10.33 0.67 7.74 3.26
6 12.00 6.00 8.39 2.39
7 9.67 2.67 7.92 0.92
5 8.00 3.00 7.73 2.73

Avg err: 2.78 2.50

0

2.6

5.2

7.8

10.4

13.0

Actual Avg (3) EMA

49



Computer 
ScienceScience

how to deal with starvation?

one way: enforce fairness
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3. Round Robin: the “fairest” of  them all

- FIFO queue

- each job runs for max time quantum

- if  unfinished, re-enter queue at back
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Given time quantum q and n jobs:

- max wait time = q ∙ (n – 1)

- each job receives 1/n timeshare
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P1 waits

P2 waits

P1 waits

P2 waits

P3 waits

P4 waits P4 waits

P1 P3

0

P2 P1 P4 P2 P1 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Round Robin, q=3
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P1 waits

P2 waits

P1 waits

P2 waits

P3 waits

P4 waits P4 waits

P1 P3

0

P2 P1 P4 P2 P1 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Wait times: 	P1 = 8, P2 = 8, P3 = 5, P4 = 7
Average:	 (8+8+5+7)/4 = 7
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Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Avg. Turnaround Avg. Wait Time

RR q=1 9.75 5.75

RR q=3 11 7

RR q=4 9 5

RR q=7 8.75 4.75
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Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Avg. Turnaround Avg. Wait Time

RR q=1 20.25 13.25

RR q=3 16.25 11.25

RR q=4 11.50 7.25

RR q=7 10.25 6.25

(CST=1)
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Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Throughput Utilization

RR q=1 0.125 0.500

RR q=3 0.167 0.667

RR q=4 0.190 0.762

RR q=7 0.200 0.800

(CST=1)
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q large ⇒ FIFO

q small ⇒ big CST overhead
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generally, try to tune q to help tune 
responsiveness (i.e., of  interactive processes)

may use:

- predetermined max response threshold

- median of  EMAs

- process profiling
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RR permits CPU-hungry jobs to run 
periodically, but prevents them from 
monopolizing the system (compare to 
FCFS and SJF)

… but also introduces inflexible systemic 

 overhead: constant context switching
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Fairness is overrated!
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Can exercise more fine-grained control by 
introducing a system of  arbitrary priorities

- computed and assigned to jobs 
dynamically by scheduler

- highest (current) priority goes next
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SJF is an example of  a priority scheduler!

- jobs are weighted using a burst-length 
prediction algorithm (e.g., EMA)

- priorities may vary over job lifetimes
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Recall: SJF is prone to starvation

Common issue for priority schedulers

- combat with priority aging
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4. Highest Penalty Ratio Next

- example of  a priority scheduler that 
uses aging to avoid starvation
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Two statistics maintained for each job:

1. total CPU execution time, t

2. “wall clock” age, T
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Priority, “penalty ratio” = T / t

- ∞ when job is first ready

- decreases as job receives CPU time
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HPRN in practice would incur too many 
context switches (due to very short bursts)

— likely institute minimum burst quanta
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5. Selfish RR

- example of  a more sophisticated 
priority based scheduling policy
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priority ↑ α

priority ↑ β

β = 0 :   RR

β ≥ (α ≠ 0) :   FCFS

β > (α = 0) :   RR in batches

α > β > 0 :   “Selfish” (ageist) RR

active (RR)
CPU

holding
arriving
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Another problem (on top of  starvation) 
possibly created by priority-based  
scheduling policies: priority inversion
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Process Priority State
P1 High Ready
P2 Mid Ready
P3 Mid Ready
P4 Low Ready
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request
all

oc
ate

d

Process Priority State
P1 High Running
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

Resource

P1 P2 P4P3
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Process Priority State
P1 High Blocked
P2 Mid Ready
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)
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Process Priority State
P1 High Blocked
P2 Mid Running
P3 Mid Ready
P4 Low Ready

request

P1 P2 P4

Resource

P3

all
oc

ate
d

(mutually exclusive allocation)
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request

P1 P4

Resource

P3

all
oc

ate
d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Running
P4 Low Ready

(mutually exclusive allocation)
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request

P1 P4

Resource
all

oc
ate

d

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Running

(mutually exclusive allocation)
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request

P1

Resource

Process Priority State
P1 High Blocked
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)
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P1

Resource
allocated

Process Priority State
P1 High Ready
P2 Mid Done
P3 Mid Done
P4 Low Done

(mutually exclusive allocation)
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P1

Resource
allocated

(mutually exclusive allocation)

Process Priority State
P1 High Running
P2 Mid Done
P3 Mid Done
P4 Low Done
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priority inversion: a high priority job 
effectively takes on the priority of  a lower-
level one that holds a required resource
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high profile case study: NASA Pathfinder

- spacecraft developed a recurring 
system failure/reset

- occurred after deploying data-
gathering robot to surface of  Mars
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culprits:

- flood of  meteorological data

- low priority of  related job: ASI/MET

- a shared, mutually exclusive resource 
(semaphore guarding an IPC pipe)
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high priority job (for data aggregation & 
distribution) — bc_dist — required pipe

- but always held by ASI/MET

- in turn kept from running by various 
mid-priority jobs
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scheduling job determined that bc_dist 
couldn’t complete per hard deadline

- declared error resulting in system reset!

- re-produced in lab after 18-hours of  
simulating spacecraft activities 
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fix: priority inheritance

- job that blocks a higher priority job 
will inherit the latter’s priority

- e.g., run ASI/MET at bc_dist’s 
priority until resource is released
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how?

- enabling priority inheritance via 
semaphores (in vxWorks OS)

- (why wasn’t it on by default?)

- prescient remote (!) tracing & patching 
facilities built in to system
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why did NASA not foresee this?

“Our before launch testing was limited to the “best case” high 
data rates and science activities… We did not expect nor test 
the "better than we could have ever imagined" case.”

- Glenn Reeves 
Software team lead
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takeaways:

- scheduling bugs are hard to predict, 
track down, and fix

- priority inheritance provides a 
“solution” for priority inversion

- scheduling is rocket science!
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questions:

- w.r.t. priority inheritance:

- pros/cons?

- how to implement?

- w.r.t. priority inversion:

- detection? how else to “fix”?

- effect on non-real-time OS?
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Even with the fine-grained control offered 
by a priority scheduler, hard to impose 
different sets of  goals on groups of  jobs

E.g., top-priority for system jobs, RR for 
interactive jobs, FCFS for batch jobs
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6. Multi-Level Queue (MLQ)

- disjoint ready queues

- separate schedulers/policies for each
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Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal
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requires queue arbitration strategy in place
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Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal

de
cr

ea
si

ng
 p

ri
or

ity
approach 1: prioritize top, non-empty queue
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Fixed priority

RR (small q)

FCFS

RR (larger q)

system

interactive

batch

normal

approach 2: aggregate time slices

30%

15%

50%

5%
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what processes go in which queues?

- self-assigned 

- e.g., UNIX “nice” value

- “profiling” based on initial burst(s)

- CPU, I/O burst length

- e.g., short, intermittent CPU bursts 
⇒ classify as interactive job
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classification issue: what if  process 
characteristics change dynamically?

- e.g., photo editor: tool selection 
(interactive) ➞ apply filter (CPU 
hungry) ➞ simple edits (interactive)
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7. Multi-Level Feedback Queue

- supports movement between queues 
after initial assignment

- based on ongoing job accounting
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RR (q=2)

RR (q=8)

RR (q=4)

e.g., 3 RR queues with different q

assignment based on q/burst-length fit
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RR (q=2)

RR (q=4)

RR (q=8)

0

P1

P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P1 RR (q=4)

RR (q=8)

P1

0

P2

P2

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1

0

P2

P3

P3

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P2 P1 RR (q=4)

RR (q=8)

P1 P3

0

P2

P4

P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P4 P2 P1 RR (q=4)

RR (q=8)

P1 P3

0

P2 P4 P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P4 P2 RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

P4 RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2 P4

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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RR (q=2)

RR (q=4)

P1 RR (q=8)

P1 P3

0

P2 P4 P1 P2 P4 P1

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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P1 P3

0

P2 P4 P1 P2 P4 P1

Wait times: 	P1 = 9, P2 = 7, P3 = 0, P4 = 6
Average:	 (9+7+0+6)/4 = 5.5  (vs 7 for RR, q=3)

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4
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- following I/O, processes return to 
previously assigned queue

- when to move up?

- for RR, when burst ≤ q
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RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

Pf

Pf
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf

Pf Pf Pf

(I/O)

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)

116



Computer 
ScienceScience

RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

Pf

Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf

Pf

Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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RR (q=2)

RR (q=4)

RR (q=8)

0

Pf Pf Pf

(I/O)

Pf Pf Pf Pf

e.g., Pflaky arrives at t=0
	 CPU burst lengths = 7, 4, 1, 5 (I/O between)
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other possible heuristics:

- multi-queue hops due to huge bursts

- exponential backoff to avoid queue hopping

- dynamic queue creation for outliers
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§Scheduler Evaluation
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i.e., how well does a given scheduling 
policy perform under different loads?

	 typically, w.r.t. scheduling metrics: wait 
	 time, turnaround, utilization, etc.
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n.b., numerical metrics (e.g., wait time) are 
important, but may not tell the full story


 e.g., how, subjectively, does a given 

 scheduler “feel” under regular load?

129



Computer 
ScienceScience

1. paper & pencil computations

2. simulations with synthetic or real-world 
job traces

3. mathematical models; e.g., queueing theory

4. real world testing (e.g., production OSes)
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(never fear, you’ll try your hand at all!)
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e.g., UTSA process scheduling simulator

- specify scheduling discipline and job 
details in configuration file

- bursts can be defined discretely, or 
using probability distributions
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output: Gantt charts & metrics
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SJF vs. PSJF vs. RR, q=10 vs. RR, q=20
processes: uniform bursts ≤ 20, CST = 1.0

Which is which?
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