164 Basic Microprocessors and the 6800

chip selécts will be .manufactured into the device. They will be tied to the
address bus from the MPU in such a manner that only one ROM is addressed
at g time. To select a ROM, a +2-V (or greater) signal must be applied to each
positive chip select (CS) and a 0-V level to each negative one (CS). The
addressing scheme for connecting the chip selects to the address bus will be
covered in great detail in Chap. 10. When a ROM is not addressed, the ROM
data bus goes into the three-state condition (high impedance).

A functional diagram of the MCM6830 ROM is shown in Fig. 9.13.

s . N

20 —22 o] » > L2 o 00

Al —23 - - E—

22 THREE- | 4
A2 —22p| ADDRESS MEMORY || STATE |4y
21| DECODER MATRIX BUFFER | 4 To NPU

A3 —=—~ {1024x8) ——» ——»D3 | paTA
FROM MPU 20 6 NE
:&DERSESS A4 T - -7—>D4 ‘68‘_507
AO—ag |AS—¥ - — D5

A6 ——'B—> o l—» D6

a7 — » 19w p7

A8 — ’

A9 __;5»

.

(cso* 10 A
o e =
Uings > Jese® 2 R

cs3* 14

-

* CHIP SELECTS ACTIVE LEVEL DEFINED BY USER

Fig. 9.13 MCM6830 ROM functional block diagram

9.5 Peripheral Interface Adapter (PIA)

The MC6821 Peripheral Interface Adapter (PIA) is an N-MOS device
housed in a 40-pin package and used as a means of interfacing peripheral
equipment and external signals with the MPU (Fig. 9.14). The PIA communi-
cates with the MPU through the same eight-bit bidirectional data bus that the
RAMSs and ROMs share. The PIA has two separate eight-bit bidirectional
peripheral data busses for interfacing to the outside world. The 16 bidirectional
input/output lines may be programmed to act as either input or output lines
(Fig. 9.15).

In addition to the 24 lines shown in Fig. 9.15, there are three chip
select pins (CSO, CS1, and CS2), a reset pin (RES), two interrupt pins (IRQA
and IRQB), a read/write Pin (R/W), four control line pins (CA1, CA2, CBl1,
and CB2), an enable pin (E), two register select pins (RSO and RS1), and two
input power pins (+5 and ground), as shown in Fig. 9.16.

M6800 Microéomputer Family (™)

The MC6821 PIA has two sides, an A side and a B side. Each side
has a peripheral data register, a data direction register, and a control register.

Each peripheral data register is the interface register between the PIA
chip and the outside world. This register is eight bits (one byte) wide.

The data direction register is used by the programmer to define each
peripheral line as an input or an output line. When each bit in this eight-bit

8 DATA 8 DATA

LINES TO/FROM CONTROL LINES TO/FROM CONTROL
PERIPHERAL LINES PERIPHERAL LINES

LT Tl

CA1 CA2 cB1 CB2
PA7 — — - PAO PB7 — — — PBO
- RSO =0
PERIPHERAL 22‘1’ z 8 PERIPHERAL RS1=1
DATA CRAZ=1 DATA crRe2=1 PJA
REGISTER A REGISTER B
RSO =0
DATA DIRECTION |Rso =0 ' DATA DIRECTION 2::3; ! 0
REGISTER A RS1=0 REGISTER B Q" = INPUT
CRA2 = 0
T TITTITTIT ‘{ L
LN B 1" = QUTPUT GRD
|— pwvR
CONTROL RSO =1 CONTROL RSO =1 (+5)
REGISTER A RS1-0 REGISTER B RS1=1
1RGA RES R/W D7 -——DO € RS1 RSO 1RGB €S0 _CS1 CS2
INTERRUPT RESET READ \eoe — / ENABLE ‘“——,— INTERRUPT ‘—my ——
A TO MPU OR B TO MPU
WRITE BDATA REGISTER CHIP
FROM LINES SELECT SELECT
MPU TO/FROM MPU FROM MPU FROM MPU
ADDRESS ADDRESS
LINES LINES
Fig. 9.14 MC6821 PIA
PIA
p———————p] PAO
PERIPHERAL ’
INPUT/OUTPUT 8 LINES Do
LINES {A SIDE) PaT DATA LINES
8 LINES TO/FROM
-1 PRO MPU DATA BUS
PERIPHERAL $ S PP B
INPUT/QUTPUT 8 LINES
LINES {B SIDE)
g————| PBT

Fig. 9.15 MC6821 PIA input/output lines

166 Basic Microprocessors and the 6800
o . ‘
, 0 PIA
- MC6821
! 40
—————»] GND CAl ft—m—
2
——p] PAD caz a2 o .
- P 38
" IROA }———»
-g—p»] PA2 IRQGB ——-—2——>
5
-t——p| PA3 RSO <L
<L> PA4 RSI - R
7 ——
<] pas RESET |[a—21—
8
~—p| PAE Do <i->
9
pare LY 01 fe—32
|
<] re0 02 ja—2
I
——p| PBI 03 lt—2
LI 1Y) D4 |a—2
<3 5|83 05 |t—28
<L> PB4 [<-—--—>27
<'—5> P85 D7 <—>26
% | ppe |l —
S csi a2t —
— 18 o]car 52 |-—2—
2 5| a2 cso |e—22—
20 2
—_—] 45V R/W jt————

Fig. 9.16 MC6821 package

egister is set to a ““1”, the corresponding peripheral data line is defined as an
>utput' line; when set to a ““0”, the corresponding peripheral data line is defined
s an input line.

. The control register is used to permit the MPU to control the opera-
10{1 of the four peripheral control lines CAl, CA2, CBl, and CB2. This
egister is also used to control the interrupt lines and monitor the status of the
nterrupt flags. Bit 2 of this register is used, in conjunction with the register
elqcts, to determine whether the peripheral data register or the data direction
egister is to be addressed.

PIA Interface Lines

_ 1. Peripheral Data Lines PAO through PA7 Each of these eight
lgta lines interfacing with the outside world can be programmed to act as
ither an input or an output by setting a 1> in the corresponding bit ‘in the
la.ta.direction register (DDR) if the line is to be an output or a “0” in the DDR
f it is to be an input. When the data in the peripheral data lines is read into
he MPU by a load instruction, those lines which have been designated as input
ines (0 in DDR) will be gated directly to the data bus and into the register

R ey

s K S S SO NN RENTEAS

M6800 Microcomputer Family cvi

selected in the MPU. In the input mode, each line represents a maximum of
1.5 standard TTL load.

On the other hand, when an output data instruction (STA A PIA)is
executed, data will be transferred via the data bus to the peripheral data
register. A “1” output will cause a “high” on the corresponding data line, and
a “0” output will cause a “low.” Data in peripheral register A that has been
programmed as output may be read by an MPU “LDA A from PIA” instruc-
tion. If the voltage is above 2 V for a logic “1” or below 0.8 V for a logic “07”,
the data will agree with the data outputted. However, if these output lines have
been loaded so that they do not meet the levels for logic *“1”, the data read
back into the MPU may differ from data stored in PIA peripheral register A.

2. Peripheral Data Lines PBO through PB7 The eight data lines
interfacing with the outside world on the B side may also be programmed to
act either as an input or output by setting a “1” in the corresponding bit in
the data direction register (DDRY) if the line is to be an output or a “0” in the
DDR if it is to be an input. The output buffers driving these lines have
three-state capability, allowing them to enter a high-impedance state when the
peripheral data line is used as an input. Data in peripheral register B that has
been programmed as output may be read by an MPU “LDA A from PIA”
instruction even though the lines have been programmed as outputs. If a line
is first programmed as an output line by storing a *1”” in data direction register
B and then storing a ““1” in that same bit position in peripheral data register
B, reading the bit status back will indicate a “1” even though excess loading
(possibly due to a short) may have occurred at the pin. This is because of the
buffering between the register and the output pin.

3. Data Lines (DO through D7) The eight bidirectional data lines
permit transfer of data to/from the PIA and the MPU. The MPU both sends
and receives data to and from the outside world through the PIA via these
eight data lines. The data bus output drivers are three-state devices that remain
in the high-impedance (off) state except when the MPU performs a PIA Read
operation.

4. Chip Select Lines (CSO, CSI, CS2) These lines are tied to the
address lines of the MPU. It is through them that a particular PIA is selected
(addressed). For selection of a PIA, the CSO and CS1 lines must be high and
the CS2 must be low. After the chip selects have been addressed, they must
be held in that state for the duration of the E (Enable) pulse, which is the only
timing signal supplied by the MPU to the PIA. This enable pulse (E) is
normally the ¢2 clock. One of the address lines should be ANDed with the
VMA line, with the output of the AND gate tied to a chip select.

5. Enable Line (E) The enable pulse (E) is the only timing signal
supplied to the PIA by the MPU. Timing on all other signals is referenced to
the leading or trailing edges of the E pulse.

6. Reset Line (RES) This line, which resets all registers in the
PIA to a logical zero, is primarily used during a reset or power-on operation.

168 " Basic Microprocessors and the 6800

It is normally in the high state. The transition of high-to-low-to-high resets all
registers in the PIA, causing the PAO-PA7, PBO-PB7, CA2 and CB2 to be
inputs and disabling all interrupts.

7. Read/Write Line (R/W) This signal generated by the MPU
controls the direction of the data transfers on the data bus. A low state on the
PIA Read/Write line enables the input buffers, and data is transferred from
the MPU to the PIA (MPU Write) on the falling edge of the E (¢2) signal
if the device has been selected. A high on the Read/Write line sets up the PIA
for a transfer of data to the data bus (MPU Read). The PIA output buffers
are enabled when the proper address and the enable pulse are present, thus
transferring data to the MPU. -

8. Interrupt Request Lines (IRQA and IRQB) These lines, which
interrupt the MPU either directly or indirectly through interrupt priority
circuitry, are “open source” (no load device on the chip). They are capable of
sinking a current of 3.2 mA from an external source, thereby permitting all
interrupt request lines to be tied together in a “wired OR” configuration.
Interrupts are serviced by a software routine that sequentially reads and tests,
on a priority basis, the two control registers in each PIA for the interrupt flag
bits (bits 6 and 7) that are set. (These control registers and the way in which
the flag bits get set will be discussed shortly.) When the MPU reads the
peripheral data register, the interrupt flags (bits 6 and 7) are cleared and the
interrupt request is cleared.

These request lines (IRQA and IRQB) are active when low.

9, Interrupt Input Lines (CAl and CBI) These lines are input
only to the PIA and set the interrupt flag (bit 7) of the control registers in the
PIA. Discussion of these lines in conjunction with the control register will
follow.

10. Peripheral Control Line (CA2) - This line can be programmed
to act either as an interrupt input or peripheral output. As an output, it is
compatible with standard TTL, and as an input, represents 1.5 standard TTL
load. The function of this line is programmed with control register A (bits 3,
4, and 5).

11. Peripheral Control Line (CB2) This line may also be pro-
grammed to act as an interrupt input or peripheral output. As an input, it has
greater than l-megohm input impedance and is compatible with standard
TTL. As an output, it is compatible with standard TTL and may also be used
as a source of up to 1 mA at 1.5 V and thus to drive the base of a transistor
switch directly. The function of this line is programmed with control register
B (bits 3, 4, and 5).

Addressing

To access a PIA, a high state (“1”’) must be applied to CSO and CS1
while a low state (**0”") is applied to CS2. The RSO and RSI pins are tied to

MoBUU IMicroconpuler Faiiiy

MPU address lines AQ and Al, respectively. Once the P1A has been acce.ssed,
the RSO and RS1 input pins are used to select one of the six internal reg}sters
in the PIA. How is it possible to select one of six registers with only two input

lines? This is the only purpose of bit 2 of the control registers. If bit 2 of control
register A (CRA) is a “0”, and RSO and RS1 (from AO and Al) are also ‘.‘Of’,
then data direction register A (DDRA) is addressed. The level of each Plt in
data direction register A (DDRA) defines whether each corresponding line of
peripheral data register A is an input (if a “0”) or an output (if a “1"‘). The
following sequence of instructions will define bits O through 4 of penpheral
data register A (PDRA) as inputs, and bits 5, 6, and 7 of this same register
as outputs (address of the PIA is 4004 through 4007).

Address - Contents Description
100 86 LDA A #% 11100000
101 11100000
102 B7 STA A $4004
103 © 40
104 04

The above series of instructions would be part of the initialization
program that would be run after applying power since the control register has
selected the DDR as opposed to the output register.

The next step after defining the individual peripheral lines on the A
side of this PIA as inputs or outputs is toload a “1” into bit 2 of control register
A (CRA). Normally, the remaining bits of this register would have data loaded
into them during this same operation, but this matter will be discussed la.ter.)
Since bit 2 is the only bit of control register A (CRA) that affects addressing,
we will look at bit 2 only rather than complicate the issue at this time. If the
previous example were continued, it might look as follows:

Address Contents Description
105 86 LDA A # % 00000100
106 00000100
107 B7 STA A $4005
108 40
109 05

This will store a “1” in bit 2 of control register A (CRA). Or.xce it has
been loaded, addressing hex location 4004, as we did initially, will access
peripheral data register A (PDRA).

170 o, ‘Basic Microprocessors and the 6800

To summarize, using the above example, addressing hex location 4004
allows the MPU to communicate with data direction register A (DDRA) if
bit 2 of control register A (CRA) is a “0”. After this bit is put at a “1”-

addressing hex location 4004 allows the MPU to communicate with peripheral
data register A (PDRA): -

Summary of A Side Addressing
RS1 RSO

CRA (Bit 2) Register Selected
0 0 0 Data direction register A
0 1 Doesn’t matter Control register A
0 0 1 Peripheral data register A

NOTE: CS0 and CS1 must be high while CS2 is low.

Addressing on the B side is handled in much the same way as on the
A side. To address data direction register B (DDR B), RSO0 is set equal to a
“0” and RS1 is set to a “1” while bit 1 of central register B (CRB) is held at
a “0” level. After the individual bits in data direction register B (DDRB) are
loaded with “1s” or “Os” to define the individual peripheral data register B
lines as inputs and outputs, a “1” is stored in bit 2 of control register B by
setting RSO to a “1” and RS1 to a “1”. After the “1” has been stored in bit

2 of CRB, peripheral data register B will be addressed whenever RSO is a “0”
and RS1 is a “1”.

Summary of B Side Addressing
RS1 RSO

CRA (Bit 2) Register Selected
1 0 0 Data direction register B
1 1 Doesn’t matter Control register B
1 0 1 Peripheral data register B

To summarize, one of the functions of the initialization program that
will be run immediately after powering up is to configure the PIAs. The
following program would define lines 0-3 of the A side as inputs and lines 47
of the B side as inputs; the remaining lines on both sides would be outputs:

PIA Address: Hex 40044007

Output Lines: A Side: lines 4-7
B Side: lines 0-3
A Side: lines 0-3
B Side: lines 4-7

Input Lines:

i et A T b e e s I vyt Bl A5

M6800 Microcomputer Family 171

Address Contents Description

100 C6 LDA B IMMED

101 11110000

102 F7 STA B EXTENDED

iO3 40 LOADS 11110000 IN

104 04 DDR A

105 Cé6 LDA B IMMED

106 00001111

107 F7 STA B EXTENDED

108 40 LOADS 00001111

109 06 IN DDR B

10A C6 LDA B IMMED

10B 00000100

10C F7 STA B EXTENDED

10D 40 SETS BIT 2

10E 05 IN CRA TO A “1”

10F F7 STA B EXTENDED

110 40 SETS BIT 2 IN

111 07 CRB TO A “1”

CONTROL REGISTER A (CRA)

765.I4I32 1]0

IRQA1 | IRQA2 CA2 Control DDRA CA1 Control

CA1 Control (Bits 0 and 1)

Peripheral control line CA1 is an input only line. It may be used to
cause an interrupt by setting the interrupt flag IRQA1 (bit 7).0f contrgl
register A. Bits O and 1 of CRA are used to determine how the interrupt is
to be handled. The IRQAT1 flag (bit 7) of CRA will get set to a “1” only
under one of the following conditions:

1. A negative transition on the CA1 line is detected and bit 1 of CRA
is a “0”. . '

2. A rising transition on the CAl is detected and bit 1 of CRA is a
“1!9.

(All other combinations will be ignored.) .

Whether the IRQA1 flag is permitted to pull the IRQA line loyv, t.hl{s
interrupting the MPU, depends upon the status of bit 0 of CRA. If this bit is
a “0”, the interrupt will be masked (disallowed). .

Peripheral control line CA1 is summarized in Table 9.2.

|72 R Basic Microprocessors and the 6800

Table 9.2 Summary of CA1 Control

Status of
Transition of Status of Status of IRQAT /ROA line
interrupt bit 1 in bit 0 in (interrupt flag) (MPU interrupt
nput line CA1 CRA (edge) CRA (mask) Bit 7 of CRA request)
] 0 0 1 Masked
(remains high)
] 0 1 1 Goes low
(processor
interrupted)
1 0 1 Masked
(remains high)
| 1 1 1 Goes low
(processor
interrupted)
— 0 Remains high
0 — 0 Remains High

As seen in Table 9.2, bit 0 of DRA is the IRQA1 interrupt “mask
programming bit.” If bit 0 is a *“0”, setting the interrupt flag IRQA1 will not
cause the interrupt line IRQA to go low. If bit O contains a *1”, the IRQA
line will be permitted to go low when IRQAL1 gets set to a “1”.

Bit 1 of CRA is the “edge programming bit.”” A “0” in bit 1 programs
the interrupt flag IRQA1 (bit 7) to get set to a ““1” in a negative transition of
the CA1 line, and a “1” in bit 1 programs the flag to get set to a ‘1" in a positive
transition. (NOTE: If the IRQA1 flag was set to a “1” during a period when
bit O had masked all interrupts, the interrupt will be allowed when bit 0 of
CRA is changed to a ““1” by the MPU.)

Data Direction Register (DDR A) (Bit 2)

This bit, in conjunction with register select lines RS0 and RS1, is used
to select either the peripheral data register or the data direction register, as
follows:

RS1 RSO CRA (Bit 2) Register Selected
0 0 0 Data Direction Register A
0 1 Doesn’t matter Control Register A
0 0 1 Peripheral Data Register A

M6800 Microcomputer Family 173

CA2 Control (Bits 3, 4, and 5)

As mentioned earlier, this line can be programmed to function as an
interrupt input line or a peripheral output line. The status of bits 3, 4, and 5
of control register A determine how it is to function. Bit 5 determines whether
the CA2 line is to be an interrupt input line or a peripheral output line. If bit
5 contains a “0”, it will be used as an interrupt line; if bit 5 contains a “1”,
it will be used as an output line.

CA2 As an Interrupt Input Line (Bit 5 = “0") Bits 3 and 4
determine how the interrupt is to be handled. The IRQA2 flag (bit 6) of CRA
will be set to a “1” only under one of the following conditions:

1. A negative transition on the CA2 line is detected and bit 4 is a “0”.
2. A rising transition on the CA2 line is detected and bit 4 is a “1”,

(All other combinations are ignored.)
The CA2 control is summarized in Table 9.3.

Table 9.3 Summary of CA2 Control

Status of I1RQA2 Status of
bit 5in Status of Status of (interrupt IRQA line
Transition of CRA (I/0 bit 4 in bit 3 in flag) (MPU interrupt
input CA2 control) CRA (edge) CRA (Mask) Bit 6 of CRA request)
l 0 0 0 1 Masked
(remains high)
0 0 1 - 1 Goes low
{processor
interrupted)
| 0 1 0 1 Masked
(remains high)
[0 1 1 1 Goes low
{processor
interrupted)
. — 0 Remains high
0 — 0 Remains high

As seen in Table 9.3, bit 3 of CRA is the interrupt “mask program-
ming bit.” If it is a *“0”, setting the interrupt flag IRQA2 will not cause
interrupt line IRQA to go low. If it is a “1”*, the IRQA line will be permitted
to go low when IRQA2 gets set to a “1”.

Bit 4 of CRA is the “‘edge programming bit.”” A “0” in bit 4 programs
interrupt flag IRQAZ2 (bit 6) to get set to a “1” on a negative transition of the

174 o Basic Microprocessors and the 6800
GOES HIGH ON TRANSITION GOES LOW WHEN
OF CAl INTERRUPT DATA ON A SIDE
(TRQAI SET TO "1") HAS BEEN READ
BY MPU DURING
FALLING EDGE OF
CA2 LINE ;o ENABLE SIGNAL (@2)
NORMALLY LOW ! (LOAD A FROM PIA}
THIS MODE Y -

o I I O |

PERIPHERAL SAYS,
HELLO MPU, T HAVE SOME
TIME | DATA FOR YOU."

PERIPHERAL PIA

| CA|

- CA2

TIME 2 PERIPHERAL PIA

1 [RQAl="1|

- CA2

\MPU SAYS,

"1 60T YOUR MESSAGE"

TIME 3 PERIPHERAL PIA

| IRQAI="0"
{UPON MPU
" READ)

cA2
\wu SAYS,

"0K PERIPHERAL, I
GOT YOUR INPUT 'DATA,

I'M READY FOR MORE."

A

Fig. 9.17 Handshake mode

CA2 line. A “1” in bit 4 programs the flag to get set to a “1” on a rising
transition. NOTE: If the IRQA2 flag was set to a *“1” during a period when
bit 4 had masked all interrupts, the interrupt will be allowed when bit 4 of
CRA is changed to a “1” by the MPU.

CA2 As an Output Line (Bit 5 = “1”) If bit 5 of CRA is set to
a ““1”, the CA2 line is designated as an output line. Whenever it is used as
an output, the IRQA2 flag (bit 6 of CRA) remains a “0” and the IRQA
remains high. As an output, it has four options:

M6800 Microcomputer Family 175

1. Bits 3, 4, and 3 of CRA = 100 (Handshake Mode) The hand-
shake mode is used when a peripheral is transmitting data to the MPU. The
peripheral must tell the MPU when it has some data, and the MPU must tell
the peripheral when it has taken the data (see Fig. 9-17). The typical sequence
is as follows:

(1) Peripheral sends signal via interrupt line CA1 to set IRQA1 flag (bit

7) of control register A, which tells the MPU it has data to give to

the MPU.

(2) When the IRQAT1 flag gets set to a “1”, the CA2 line goes high.

(3) After the MPU reads the contents of peripheral register A (load A
from PIA), the CA2 line will go low. This signals the peripheral that
the MPU took the data and is now ready for more.

2. Bits 5, 4, and 3 of CRA = 101 (Pulse Mode) This mode, which
tells the peripheral that the data on peripheral data register A has been read
by the MPU, is used when a complete handshake is not required. The periph-

‘eral may make data available to the MPU on a continuing basis but needs to

know when the MPU takes the data (see Fig. 9.18).

GOES LOW AFTER
A RE.AD A SIDE
CA2 NORMALLY DATA" INSTRUCTION

HIGH IN THIS MODE \ / GOES HIGH ON THE

NEGATIVE EDGE OF
THE NEXT € SIGNAL
AFTER THE "READ
ASIDE DATA |
INSTRUCTION

ENABLE

SIGNAL I l I I
(@2)

MPU SAYS,

HEY PERIPHERAL,

1JUST READ ATA."
PERIPHERAL } YOUR DAT:

- CA2

Fig. 9.18 Pulse mode

3. Bits 5, 4, and 30f CRA = 110 In this mode, the CA2 output
line will always be in the low state.

4. Bits 5, 4, and 3 of CRA = 111 In this mode, the CA2 output
line will always be in the high state.

Interrupt Flag Bits (IRQAI and IRQA2)

As already seen, bits 6 and 7 of control register A get set when an
interrupt occurs. Flag bit IRQA1 (bit 7) is the interrupt bit for the CA1 input
line. Flag bit IRQAZ2 (bit 6) is the interrupt bit for the CA2 input line. The

176 . Basic Microprocessors and the 6800

orilv way that these bits can get set is via the CA1 and CA2 interrupt input
lines. The MPU cannot store a **1” in these two locations, but it can read their
. . status. When the MPU reads the status of peripheral data register A, bits 6
and 7 of the control register will be cleared (*‘0”).

Control Register 8 (CRB)
7 6 NIERE 2 1 ¢
IRQB1 1RQB2 CB2 Control DORB CB1 Control

CB1 Control (Bits 0 and 1)

Peripheral control line CB1 is an input only line that may be usgd to
cause an interrupt by setting interrupt flag IRQB1 (bit 7) of control .reglster
B. Bits 0 and 1 of CRB are used to determine how the interrupt is to be
handled. The IRQBI1 flag (bit 7) of CRB wil get set to a ““1” only under one

of the following conditions:
1. A negative transition on the CB1 line is detected and bit 1 of CRB

is a “0”. . ‘
2. A rising transition on the CB1 is detected and bit 1 of CRB is a

u]n

(All other combinations will be ignored.)
Whether the IRQBI flag is permitted to pull the IRQB line low, thus

Table 9.4 Summary of CB1 Control

Status of

Transition of Status of Status of IRQB1 /FIOQ Line
interrupt bit 1in bit 0 in (interrupt flag) (MPU interrupt
input line CB1 CRB (edge) CRB (mask) Bit 7 of CRB request)
l 0 0 1 Masked
(remains high)
’ 0 1 1 Goes low
L {processor
interrupted)
[1 0 1 Masked
(remains high)
f 1 1 1 Goes low
(processor
interrupted)
l 1 —_ 0 Remains high
0 -_ Remains high

VibbuU MICTOCOmputer Family ‘ 17/

interrupting the MPU, depends on the status of bit 0 of CRB. If the bit is a
“1”, the IRQB line will go low, causing the interrupt. If it is a “0”, the
interrupt will be masked (disallowed).

The CBI1 control is summarized in Table 9.4.

As seen in Table 9.4, bit 0 of CRB is the IRQBI interrupt “mask
programming bit.” If bit 0 is a “0”, setting the interrupt flag IRQB1 will not
cause the interrupt line IRQB to go low. If bit 0 contains a “1”, the IRQA
line will be permitted to go low when IRQBI gets set to a “1”.

Bit 1 of CRB is the “edge programming bit.” A “0” in bit 1 programs
the interrupt flag IRQB1 (bit 7) to get set to a “1” on a negative transition of
the CBI line. A “1” in bit 1 programs the flag to get set to a “1” on a positive
transition. (NOTE: If the IRQBI flag was set to a “1” during a period when
bit 0 had masked all interrupts, the interrupt will be allowed when bit 0 of CRB
is changed to a “1” by the MPU.)

Data Direction Register B (DDRB) (Bit 2)

This bit, in conjunction with register select lines RSO and RS1, is used
to select either the peripheral data register or the data direction register.

RS1 RSO CRB (Bit 2) Register Selected
1 0 0 Data direction register B
1 1 Doesn’t matter Control register B
1 0 1 Peripheral data register B

CB2 Control (Bits 3, 4, and 5)

As mentioned earlier, this line can be programmed to function as an
interrupt input line or a peripheral output line. The status of bits 3, 4, and 5
of control register B determine how the CB2 line is to function. Bit 5 deter-
mines whether it will be an interrupt input line or an output line. If bit 5
contains a “0”, it will be an mterrupt line. If bit 5 contains a “1”, it will be
an output line.

CB2 As an Interrupt Input Line (Bit 5 = “0”) Bits 3 and 4 of
CRB are used to determine how the interrupt is to be handled. The IRQB2
flag (bit 6) of CRB will get set to a “1” only under one of the following
conditions:

1. A negative transition in the CB2 line is detected and bit 4 is a “0”.
2. A rising transition in the CB2 line is detected and bit 4 is a “1”.

All other combinations are ignored.
The CB2 control is summarized in Table 9.5.
As seen in Table 9.5, bit 3 of CRB is the interrupt “mask program-

o o Dasiu v Upi VLESSULS dlid L1E uoUU

Table 9.5 Summary of CB2 Control

Status of IRQB2 Status of
bit 5in Status of Status of (interrupt IRQB line
Transition of CRB (/0 bit 4 in bit 3 in flag) (MPU interrupt
input CB2 control CARB (edge) CRAB (mask) Bit 6 of CRB request)
0 0 0 1 Masked
(remains high)
] 0 0 1 1 Goes low
(processor
interrupted)
I~ 0 1 0 B Masked
(remains high)
I 0 1 1 1 Goes low
(processor -
interrupted)
| 1 — 0] Remains high
0 — Remains high

ming bit”. If bit 3 is a “0”, setting the interrupt flag IRQB2 will not cause the
interrupt line IRQB to go low. If it contains a “1”, the TRQB line will be
permitted to go low when IRQB2 gets set to a 1",

Bit 4 of CRB is the “edge programming bit”. A “0” in bit 4 programs
the interrupt flag IRQB2 (bit 6) to get set to a “1”” on a negative transition of
the CB2 line. A “1” in bit 4 programs it to get set to a *“1” on a rising transition.
(NOTE: If the IRQB2 flag was set to a “1”” during a period when bit 3 had
masked all interrupts, the interrupt will be allowed when bit 3 of CRB is
changed to a “1” by the MPU.

CB2 As an Output Line (Bit 5 = “I1”) If bit 5 of CRB is set to
the CB2 line is designated as an output line. Whenever it is used as an
output, the IRQB2 flag (bit 6 of CRB) remains a ““0” and the IRQB remams
high. As an output, it has four options:

1. Bits 5, 4, and 3 of CRB = 100 (Handshake Mode) This mode
is used when the MPU sends data to a peripheral device. The peripheral must
tell the MPU it is ready for the data. After the MPU sends the data to
peripheral data register B, it sends a signal to the peripheral telling it that the
data is available at that register. After the peripheral takes the data, it can
request more data, and the sequence is repeated. The typical sequence (see Fig.
9.19) is as follows:

(1) In order to tell the MPU that it wants some data, the peripheral sends

a signal via interrupt line CB1 to set the IRQBI flag (bit 7) of central

register B.

“ln

Mb8U0 Microcomputer Family 179

(2) When the TRQBI flag gets set to a ““1”, the CB2 line goes high.

(3) After the MPU sends the data to peripheral data register B, the CB2
line will go low, thereby signaling the peripheral that the data is there
for the taking.

GOES HIGH ON TRANSITION GOES LOW ON FIRST
OF CBI INTERRUPT POSITIVE OF ENABLE

(IRQBI SET TO "1") SIGNAL AFTER MPU
STORES DATA IN THE
PERIPHERAL DATA

CB2 NORMALLY Low -
IN THIS MODE

| L_
mee 1 L1 LI LT L

PERIPHERAL SAYS,
TIME 1 "HELLO MPU, | NEED SOME DATA"
- PERIPHERAL PIA

- CBI
cB2

4

MPU SAYS, "I GOT YOUR MESSAGE"
TIME 2
—_= PERIPHERAL / PIA
/ »{1RQBI ="1"
cB2

A

TIME 3
E— PERIPHERAL PIA

»{IRQBI="0"
c82

A
o)

\MPU SAYS, “0K PERIPHERAL, HERE
IS YOUR DATA ON NY PERIPHERAL
DATA REGISTER 8"

Fig. 9.19 Handshake mode

2. Bit 5,3 of CRB = 101 (Pulse Mode) This mode is used to tell
the peripheral that data is available in PIA peripheral data register B (see Fig.
9.20).

3. Bits 5, 4, and 3 of CRB = 110
line will always be in the low state.

4. Bits 5, 4, and 3 of CRB = 111
line will always be in the high state.

In this mode, the CB2 output

In this mode, the CB2 output

180 ’ Basic Microprocessors and the 6800
; GOES LOW ON THE POSITIVE TRANSITION
PR ’ ON THE_FIRST ENABLE (@1) PULSE

AFTER THE "STORE DATA IN PERIPHERAL
DATA REGISTER B" INSTRUCTION

CB2 NORMALLY

HIGH IN THIS MODE GOES HIGH ON THE NEXT POSITIVE ENABLE

(@2) AFTER THE "STORE DATA IN
PERIPHERAL REGISTER B" INSTRUCTION

/

CB2 ==

ENABLE

F1 M

L

"HEY PERIPHERAL,
HERE'S DATA FOR YOU"

PERIPHERAL PIA

BN

-t B2

Fig. 9.20 Pulse mode

Interrupt Flag Bits (IRQBI and IRQB2)

As already seen, these two bits (6 and 7) of control register A get set
when an interrupt occurs. Flag bit IRQB (bit 7) is the interrupt bit for the CB1
input line. Flag bit IRQB2 (bit 6) is the interrupt bit for the CB2 input line.
The only way these bits can get set is via the CB1 and CB2 interrupt input
lines. The MPU cannot store a ““1” in these two locations, but it can read their
status. When it reads the status of peripheral data register B, bits 6 and 7 of
control register B will be cleared (“0”).

PIA Summary

1. Register Selects RS1 and RS0

(a) If RS1 is set to a “0”, then the A side of the PIA is selected.

(b) If RS1 is set to a “1”, then the B side of the PIA is selected.

(c) If RSO is set to a “0” and CRA (or CRB) bit 2 is a “1”, then the
peripheral data register is selected.

(d) If RSO is set to a “0” and CRA (or CRB) is a “0”, then the data
direction register is selected.

(e) If RSO is set to a “1”, then the control register is selected.

2. CAl or CBI Interrupt Lines If bit 0 of CRA (or CRB) is set
to a “0”, all interrupts caused by CAl (or CB1) are masked t?y. the PIA.
However, the interrupts flags will still get set if the proper transition occurs
on CA1 (CB1). If bit 0 of CRA (or CRB) is set to a *“1”, all interrupts caused
by CA1 (or CB1) will be allowed to interrupt the MPU.

MogUu Microcomputer Family 1681

3. CA2 or CB2 Interrupt Line If bit 3 of CRA (or CRB) is set to
a “0”, and bit 5 = “0”, all interrupts caused by CA2 (or CB2) are masked
by the PIA. However, the interrupt flags will still get set if the proper transition
occurs on CA2 (or CB2). If bit 3 of CRA (CRB) is set to a “1”, all interrupts
by CA2 (or CB2) will be allowed to interrupt the MPU.

If bit 5 = “1”, then the CA2 (or CB2) lines are used as outputs.

4. IRQAI, IRQA2, IRQBI, IRQB2 Flag Bits These bits (bits 6
and 7 of CRA & CRB) are read only bits. The MPU cannot write into them,
and only interrupts from the outside world can set them. They will be cleared
only when the peripheral data register is read or there is a hardware reset.

5. Control Registers CRA and CRB Control registers CRA and
CRB have total control of CA1, CA2, CBI, and CB2 lines. The status of all
eight bits may be read into the MPU, although it can only write into bits 0
through 5.

6. Addressing Before addressing PIAs, the Data Direction Regis-
ter (DDR) must first be loaded with the bit pattern that defines how each line
is to function, that is, as an input or output. A logic “1” in the register defines
the corresponding line as an output, and a logic “‘0”" defines it as an input. Since
the DDR and the peripheral data register have the same address, control
register bit 2 determines which is being addressed. If bit 2 is a logic ““0”, then
the DDR is addressed; if it is a logic “1”, the peripheral data register is
addressed. Therefore, it is essential that the DDR be loaded before setting bit
2 of the control register.

The above sequence of setting up the PIA assumes that the data
outputs of the PIA are active high (True 2.4 V).

7. PIA—After Reset When the RES (Reset Line) has been held
low for a minimum of eight machine cycles, all registers in the PIA will have
been cleared. Because of the reset conditions, the PIA has been defined as
follows:

(1) All I/0 lines to the “outside world” are defined as inputs.

(2) CA1, CA2, CBI1, and CB2 are defined as interrupt input lines that are
negative-edge sensitive.

(3) Allinterrupts on the control lines are masked. Setting of interrupt ﬂag
bits will not cause IRQA or IRQB to go low.

Active Low Outputs

When all the outputs of a given PIA port are to be active low (True
< 0.4V), then the following procedure should be used:

1. Set bit 2 in the control register.

2. Store all 1’s ($FF) in the peripheral data register.

3. Clear bit 2 in the control register.

4. Store all I’s (3FF) in the data direction register.

5. Store control word (bit 2=1) in the control register.

Basic Microprocessors and the 6800 M6800 Microcomputer Family 183

Example The B side of PIAI is set up to have all active low
outputs. CB1 and CB2 are set up to allow interrupts in the handshake mode
and CB1 will respond to positive edges (low-to-high transitions). Assume reset
conditions. Addresses are set up and equated to the same labels as in the

FOL A

EMI FOUTE
LDN A PIMLBC
EMI FOUTZ
FOL A

EMI FOUTY

: LIF A FTAZAT
previous example. BT FOUTS
FOL A
1. LDA A #4 EMI FOUTE
2. STA A PIAIBC Set bit 2 in PIA1BC (control register) lit[:; :Df'ét“‘-"’"
3. LDA B #S$FF g POL A
4. STA B PIAIBD All 1’s in peripheral data register 1 o Emy PouTE
5. CLR PIAIBC Clear bit 2 | 0 F‘El%lll HOF eTHIZ IT PIRIAC CA1 TERYICE ROUTINE
6. STA B PIAIBD All 1's in data direction register » BOUTE HOF #THIZ 1T PIAIAC CAZ IERVICE FOUTINE
! 0 FTL)
7. LDA A #$27 . i =i FOUTS HOF eTHI- 17 FPIRLEC CE1 EPYICE FOUTINE
8. STA A PIAIBC 00100111 Control register i FTI
§ | EDUT4 NOF eTHID 13 PIRIED CE2 TEFWICE POUTINE
. - . B FTI
' The above pr.ocedure is required in order to prevent ou.tputs from | e WOF eTWID 11 PIAZAC CR1 TERVICE FOUTINE
going low—to the active low True state—when all 1's are stored in the data 5 o FTI e e cEwICE POUTINE
direction register, as would be the case if the normal configuration procedure o poul® MO eTHIZ 13 FIRZAL CRE ZEFVIC
were followed. om POUTS NOF eTHIT 17 PIAZEC [EL TEFVICE FOUTINE
! stn PTI
| Zip POUTE HOP oTWIZ 1T PIAZRC CB2 IERVICE POUTINE
. . 20 FTI1
PIA Polling Routine Tan o

This routine is one of the various techniques for determining which
PIA has generated an interrupt. Recall that every PIA has an A side and a
B side that may cause the TRQ line to go low, thus generating an interrupt.
All PIA interrupt lines are tied together and connected to the one interrupt
input pin (TRQ) of the MPU. Consequently, when an interrupt is generated,

The assembled program for the routine is as follows:

00100 NAM POLL
a bit 6 or 7 of a PIA is set. The only way to determine where the interrupt \ gg};g <005 PIRIAC gzz :E: os
came from is to poll bits 6 and 7 of every PIA control register to see which [00130 4007 PIAIBC EQU $4007
one is a “1” (and thus an interrupt). _ o0lee 4008 lhepe EQU a0
This routine (see Fig. 9.21 for its flowchart) polls the control registers | 00200 0100 ngg . :i g?nc
. 00210 0100 B6 4005 POLL L
of two PIAs. It reads the contents of each control register and executes the ‘ 00220 0103 2B 1C BMI ROUTL
BMI instruction that effectively checks on whether bit 7 is set. If it is not set, | gggig g:gz ;3 'B ';g‘; R eoute
a ROL A instruction is executed that shifts bit 6 into bit 7, thus permitting ‘ 00250 0108 B6 4007 LDA A PIAIBC
use of the BMI instruction again. Once a set control bit is detected, the 00260 010D 39 18 i ROUTS
processor branches to a subroutine to service that particular interrupt. After 00280 010E 2B 17 nn; o ggzac
. 00290 0110 B6 4009 LD
the interrupt has been serviced, an RTI instruction 1s executed that causes the ;. 003?,0 0113 2B 14 BMI POUTS
processor to return to whatever it was doing before the interrupt. ; gggég g“g 2; '3 ';g‘l- R eoute
The source program for the PIA polling routine is as follows: } 00330 0118 B6 400B LDR A PIA2BC
: ! 00340 011B 2B 10 BMI ROUT?
s 00350 011D 49 ROL A
100 nAM POLL i 00360 011€ 2B OF BMI ROUTS
110 OPT MEM) | 00370 0120 3B RT1
120 PIALAC EOL $4007 : 00380 0121 01 ROUT1 NOP +THIS IS PIARIAC CA1 SERVICE
120 PIALEC Eci) $4007 00390 0122 3B RT1
140 PIAZAC EOU B400% 00400 0123 01 ROUT2 NOP +THIS 15 PIAIAC CA2 SERVICE
150 PIRSEC EfM) $400F 00410 0124 3B RTI
con OFG RL100 00420 0125 01 ROUT3 NOP *THI3 IS PIA1BC CB1 SERVICE
210 POLL LDA R PIALAC | 00430 0126 3B eTI
Zzo BML FOUTH ! 00440 0127 01 ROUT4 NODP *THI3 13 PIA1BC CB2 SERVICE

184 Basic Microprocessors and the 6800

00450 0128 3B RTI
gg:gg g:g: g; ROUTS :25; oTHIS IS PIA2AC CA1 SERVICE
gg:gg g:gg g; ROUTE :g? oTHIS IS PIARAC CA2 SERVICE
gg:?g g:gg g; ROUT? :gl;‘ B oTHIS 1S PIAR2BC CB1 SERVICE
gg:gg g:gg 30; ROUTS :2; oTHIS IS PIA2BC CB2 SERVICE
00540 MON

READ
FIRST
PIA
SERVICE ROUTINES
(CR7 SET)
PIATAC ROUT 1
YES PIATIBC ROUT 3
PIA2AC ROUT &
PIA2BC ROUT 7
NO
READ SHIFT
NEXT LEFT ONE
PIA 8IT

SERVICE ROUTINES
(CR6 SET)

PIA1AC ROUT 2

PIAIBC ROUT 4
PIA2AC ROUT 6
PIA2BC ROUT 8

Fig. 9.21 Flowchart for PIA polling routine

9.6 Asynchronous Communications Interface Adapter

In the previous section, it was shown how the MPU communicates
with the outside world via the PIA, through which data can be sent to or
r‘eceived from the MPU eight bits at a time in parallel. For this purpose, eight
lines are needed between the PIA and the peripheral (data).

. When it is necessary to send or receive data over very long distances,
eight separate lines must be run from the data service to the PIA. The Asyn-

M6800 Microcomputer Family 185

chronous Communications Interface Adapter (ACIA) permits data to be
transmitted in a serial format with only one line, not the eight lines a PIA
requires. The ACIA can function either as a serial-to-parallel converter or as
a parallel-to-serial converter (Fig. 9.22). Data can be sent to the ACIA over
the DO-through-D7 data lines; it is then converted to a series of 1’s and 0’s in
the ACIA and sent out over a single line to a receiver. Likewise, data in the
form of 1’s and O’s can be received by the ACIA from an external source,
converted to a parallel format in the ACIA and sent to the MPU over the
DO-through-D7 data lines. As one can well imagine, a great deal of bookkeep-
ing must be done when data bits are transmitted or received in a serial format
to resolve such questions as: (1) Where does each group of bits stop and the
next group start? (2) How does the ACIA know when it is to receive or send
data? (3) How does the ACIA detect if a bit is lost? These questions, and many
others, will be answered in this section.

General

In any type of data communications, two terms are encountered—
synchronous and asynchronous—that refer to the type of clocking used to
transfer the data. In synchronous transmission, the data rate is locked into the
system clocking. The receiver and the transmitter must be synchronized with
each other since there is no two-way communication. Usually, one device will

ACIA Py
07 »{ 07
- —
00 »{ 00
NN
 [07] 0s]os] 04] 03] 02] 1 [00
=2 orToslpses ooz o o
(A) SERIAL TO PARALLEL
ACIA MPU
o T I
(09 oi [oz[0304 05]06{07]
07 = o7
D0 |- DO

{8) PARALLEL TO SERIAL

Fig. 9.22 Conversion functions of the ACIA

N 186 ’ Basic Microprocessors and the 6800

request some data from the other device, wait a fixed period, and then read
the data (assuming that the data was placed on the bus during the waiting
period). In asynchronous transmission, “start” and “‘stop” bits are added to the
data word to let the receiver know where each word ends and begins. After
the receiver detects the stop bit (end of data word), it will then wait for the
next data word. The data words are not locked into the system timing.

Baud rate is a term used frequently in serial data communications but
often is misunderstood. A baud is defined as the reciprocal of the shortest pulse
duration in a data word (signal), including start, stop, and parity bits. This is
often taken to mean the same as “bits per second,” a term that expresses only
the number of data bits transferred per second. Very often, the parity bit is
included as an information or data bit. Definitions of various bits follow.

Start Bit The first bit of a serial data word that signals the start
of transmission of a series of data bits. This bit is usually detected as a
transition from a “1” to “0,” referred to as a “mark-to-space” transition.

Stop Bit The last bit of a serial data word that signals the end of
that word. This bit is usually a high (“1”") signal.

Parity Bit When transmitting a series of bits, it is common for the
transmitter to add what is known as a “parity bit” to the regular data bits
transmitted. Two types of parity are used. If odd parity is used, the sum of
the “Is” transmitted, including the parity bit, will be odd. For example, if the
data word contains three “Is”, the parity bit will be zero. If four “1s” are in
the data word, a “1” would be added by the transmitter so that the number
of “Is” transmitted is odd. The same principle applies to even parity. A *“1”
or “0” will be added in the parity bit to make the sum of bits transmitted an ~
even number. The receiver, in both cases, will check to make sure that an odd
number of ““1”’s has been received if odd parity is used or an even number of
“I”s if even parity is used. It should be pointed out that if two bits change
within the transmitted word, it will not be detected by the parity detection
circuit. Only when one bit is lost during transmission will the error be detected
and an error message presented.

The role of start, stop, and parity bits is graphically displayed in Fig.
9.23. The relationship of the baud rate, the word rate, and the number of bits
transmitted per second is shown below:

Baud rate = 1/bit time = 1/9.09 msec = 110 baud
Time to transmit one character word = (11 bits) X (9.09 msec/bit) = .1 sec
Word rate = 1/.1 sec = 10 characters/sec
Baud rate of 110 = (10 characters/sec) X (8 bits/character)
= 80 bits/sec (including parity)

Notice that the baud rate and the number of data bits transmitted per
second are not the same. The baud rate of 110 includes the start and stop bits,
whereas the rate of 80 bits per second includes only information bits (including
parity). In Fig. 9.23, a seven-bit ASCII word was transmitted. With the ACIA,

|
!
|
1
i

M6800 Microcomputer Family 187

110 BAUD
SERIAL DATA TIMING FOR ASCIT

'mbututin Suxienie sl shbeniiy SRnSunt Eaunih SRR R T
| | | : | : I |'
I I l [i | { |
' 1 | 1 | 1 |
i | { | | | R
Do DI D2 D3 D4 D5 06
START BIT —» e————— 7 DATA BITS ———]
BIT TIME —= [— PARITY BIT —| -—
.09 ms
(.09 ms STOP BITS ——= |-—
|@~—————— ONE CHARACTER WORD———————

> Fig. 9.23 Role of stop, start, and parity bits
several options are available as to the number of data bits (seven or eight), odfi
or even parity, and the number of stop bits (one or two). Table 9.6 gives bit

time, character time, characters/sec, and data bits/sec for various baud rates. -

Table 9.6 Baud Rate Data

Baud rate 110 150 300 1200

8it time(msec) 9.09 6.66 3.33 .833
*Character time 1 sec 0.73 sec .0366 sec .0092 sec
Characters/sec 10 13.7 27.32 108.7
Data bits/sec 80 110 218.6 870

* Assume one start bit, eight data bits (including parity), and two stop bits, or
eleven bits per character.

Bit time = 1/baud rate

Character time = (total number of bits in word) X (bit time)
Characters/sec = 1/character time

Data bits/sec = 8 X characters/sec

To send the ASCII character X (58,,) with one star.t bit, even parity,
and two stop bits, the pulse train would be as shown in Fig. 9.24.

NEXT
CHARACTER
:DO¢DI:DZ D3 D4 D5 D€ t I
2 STOP BITS
PARITY BIT

n i

i
— - 4

START 8IT
X=58g=1 011000

[oo

Dl

02

D3

— 4

05

06

Fig. 9.24 Pulse train

188 Basic Microprocessors and the 6800

Bit Synchronization

As digital signals are transmitted over a single line, it is possible to
read erroneous results because of the noise on the line. To minimize the chance
of such error, a sampling technique js used to determine whether the start bit
is valid. After it has been proved valid, each bit in the character word is
sampled at approximately the center of the bit. :

=7

Wl

START BIT

NOISE NOISE

Fig. 9.25 Reading start bit in presence of noise pulse

If the receiving circuit were to read the value of the start bit while a
noise pulse is present (Fig. 9.25), it would determine that the start bit is invalid.
Likewise, if a reading of bits 2 and 3 were taken during a noise pulse, it would
read a “0” for bit 2 and a “1” for bit 3, neither of which would be correct.
The erroneous reading of bits 2 and 3 would not be detected by the parity
detection circuit since the total number of “1s” remains the same.

A method of minimizing the chance for an erroneous reading is to
sample the start bit several times to determine if it is valid and then to sample
each bit thereafter with a short pulse at approximately the center of the bit.
Sampling at approximately the center of the bit minimizes the chance of error
since the noise pulse would have to be present at precisely the point where the
sampling occurs. This sampling is accomplished by adding an external clock
signal. Clock frequencies of 16, 32, and 64 times the baud rate are often used.
The higher the clock frequency, the less the chance for a false reading. The
MC6850 ACIA, which will be discussed shortly, can accommodate a clock
frequency of 1, 16, and 64 times the baud rate. These frequencies are referred
to as the — 1, = 16, and + 64 modes.

To illustrate what all this really means, assume that the partial charac-
ter being received is preceded by the normal start bit. If a clock rate of 16 times

the baud rate (<= 16 mode) is being used, as shown in Fig. 9.26, the receiver, -

upon detection of the mark-to-space transition, will start its sampling on the
rising edge of the external clock. If the signal remains low for nine separate
samplings (in the <+ 16 mode), the bit is assumed to be a valid start bit and
is shifted into the ACIA shift register during the falling edge of the internal
clock. After every sixteenth pulse thereafter from the center of the start bit,
a reading will be made to determine whether that respective bit is a “1” or “0”".

If a clock rate of 64 times the baud rate were used (= 64 mode), the
start bit would be determined valid after a sampling of 33 readings. The data
bits would be sampled every 64 pulses from the center of the start bit.

M6800 Microcomputer Family 189

BITO
START BIT

9 18
READINGS —-L———'<—- READINGS ——o

Fig. 9.26 = 16 mode sampling

If the start bit in Fig. 9.26 is expanded, the sampling would appear
as shown in Fig. 9.27. Notice the noise pulse on the start bit. Since it did .n(.)t
occur during the sampling period, it goes by undetected, and the start bit is
determined to be valid.

ART BIT
NOISE END OF START

MARK __‘ ﬂ/

SPACE

o
A

EXTERNAL
CLOCK

(=16) t T I T t T T T I_SAMPLE9

START BIT SHIFTED TO THE
ACIA SHIFT REGISTER IF IT HAS BEEN

INTERNAL c DETERMINED TO BE VALID
CLOCK 7 /

Fig. 9.27 Sampling with expanded start bit

The same argument applies to each data bit. Notice in Fig. 9.28 that
on the sixteenth pulse from the center of the start bit, a sampling takes plgce,
yet, despite the noise on the line, the correct data is shifted into the ACIA since

the noise does not occur during the sampling period.

CENTER OF FIRST BIT

[are ¥ B

CENTER OF START BIT

L —

SAMPLE 16,
LEVEL OF BIT

0 1S DETERMINED

TO BE A "I" AT

THIS PRECISE POINT.

Fig. 9.28 Sampling at sixteenth pulse

190 . " Basic Microprocessors and the 6800

- Description of the ACIA

The MC6850 Asynchronous Communications Interface Adapter
(ACIA) is an N-MOS device housed in a 24-pin package that is used as a means
of receiving and transmitting as many as eight bits of data in a serial format
(Fig. 9.29). The ACIA communicates {transmits/receives data) with the MPU
via an eight-bit bidirectional data just as RAMs, ROMs, and PIAs do.

The ACIA has four registers that may be addressed by the MPU. The
Status Register (SR) and the Receiver Data Register (RDR) are “read only”
registers, meaning that the MPU cannot write into them. The Transmit Data
Register (TDR) and the Control Register (CR) are ““write only” registers,
meaning that the MPU cannot read them.

In addition to these four registers, the ACIA has three chip select lines
(CS0, CS1, CS2), one register select line (RS), one interrupt request line (IRQ),
one enable line (E), one read/write line (R/W), and seven data and data
control lines (RXC, TXC, DCD, RTS, RXD, TXD, and CTS).

ACIA
NC6850
I e 24
FROM SYSTEM GROUND. ————=] GND TS |-«————— FROM MODEM OR PERIPHERAL
FROM PERIPHERAL ——Z 3| RX DATA C0 |22 FROM MODEM OR PERIPHERAL
FROM EXTERNAL CLOCK —— | RX CLOCK 00 |22 —p)
FROM EXTERNAL CLOCK ——am] TX cLOCK SN
TO MODEM OR PERIPHERAL ~——] RTS .2l
TO MODEM OR PERIPHERAL ~€—o—] Tx DATA ! | 10/FROM MPU
il _ . D0—D7
T0 MPU TRG LINE <——] TRQ 'S (DaTA LINES
—8adcso -
FROMNPU | ~—2a] E52 ‘ R
ADDRESS 10 15
LINES — 10t e 07 |t |
—a]gs € bt FrOM TTL 0 2 cLOCK
FROM SYSTEM POWER ——t2-an| 45 R/W jeL>—— FROM MPU R/W LINE
Fig. 9.29 ACIA package
MPU Interface Lines

Bidirectional Data Lines (DO-D7) The eight bidirectional data
lines permit transfer of data to and from the ACIA and the MPU. The MPU
receives and sends data from and to the outside world through the ACIA via
these eight data lines. The data bus output drivers are three-state devices that
remain in the high impedance (off) state except when the MPU performs an
ACIA read operation.

Chip Select Lines (CSO, CS1, and CS2) It is through these lines,
which are tied to the address lines of the MPU, that a particular ACIA is

M6800 Microcomputer Family 191

selected (addressed). For this selection, the CSO and CS1 lines must be high
and the CS2 must be low. After the chip selects have been addressed, they must

be held in that state for the duration of the E enable pulse, which is the only

. timing signal supplied by the MPU to the ACIA.

Enable Line (E) The enable pulse is a high-impedance, TTL-
compatible input from the MPU that enables the ACIA input or output buffers
and that clocks data to and from the ACIA. This input is usually the TTL
&2 signal from the clock.

Read/Write Line (R/W) The read/write line is a high-imped-
ance, TTL-compatible input that is used to control the direction of data flow

between the ACIA’s eight-bit parallel data bus and the MPU. When read/

write is high (MPU read), the ACIA output driver is turned on, and a selected
register is read by the MPU. When the read/write line is low (MPU write),
the ACIA output driver is turned off, and the MPU writes into a selected
register.

Register Select (RS) The register select line is a high-impedance,
TTL-compatible input from the MPU that is used to select, in conjunction
with the read/write line, either the transmit/receiver data register or the
control/status register in the ACIA (Fig. 9.30). It must be tied to an address
line from the MPU. A high or RS selects transmit/receive data registers; a low
selects control/status registers.

Modem Control Lines

Serial data to be transmitted over telephone lines must be sent to a
modem that prepares the signal for transmission (Fig. 9.31). Three signals
between the ACIA and the Modem permit a limited control of the latter.

Clear to Send (CTS) This high-impedance TTL-compatible input
provides automatic control of the transmitting end of the communications link
via the modem CTS-signal active-low output by inhibiting the Transmit Data
Register Empty (TDRE) status bit. If this line is not used, it should be tied
to system ground.

Regquest to Send (RTS) This ACIA output enables the MPU to
control a peripheral or modem via the data bus. The RTS output corresponds
to the state of control register bits 5 and 6. When CR6 equals “0” or both CRS
and CR6 equal “1”, the RTS output is low (the active state). This output can
also be used for the Data Terminal Ready (DTR) on the 6860 modem.

Data Carrier Detect (DCD) This high-impedance, TTL-compati-
ble input provides automatic control of the receiving end of a communication
link by means of the modem Data Carrier Detect (DCD) output. The DCD
input inhibits and initializes the receiver section of the ACIA when high. A
low-to-high transition of the DCD line initiates an interrupt to the MPU to
indicate that a loss carrier has occurred when the Receiver Interrupt Enable
(RIE) bit is set. If this line is not used, it should be tied to system ground.

192

Basic Microp

rocessors and the 6800

'

ACIA
‘——__——___————_—___———l
GND TRANSMIT DATA REGISTER (TOR) |
SERIAL DATA OUT
e |wmreomv[mloslnslua]ns[nzl ot oo |
(+5) XD :
BUS /l/ I
l DRIVERS
(o) '
MPY DATA
j — LINES (PARALLEL STATUS REGISTER (SR) |
-1 TOSERIALCONVERTER! [1 61 5 | o] 31 21 11 o |}
pata | ¥ 0§ IRa| Pe Joven| Fe | TTS| OCD | TDRE[RDRF |
:.’LNES =] 04 READ ONLY |
< -
o 1J 03
FROM [, I
MPU] 02 CONTROL REGISTER (CR) |
—~ 0 TO MPU DATA LINES rfefslala]afr o |
| .| (SERALTO me| Tc ws cos | |
PARALLEL
Ul conventen WRITE
l ONLY |
AXC :
READ] SERIAL DATA IN RXD
lrxc omv[““l“‘[”’[“’l““l“lDﬁl“71 |
necnvs DATA nscusnn mon) _ o o
LR CTS cso _cst TSz DCD RIS |
mennun ENABLE CI.EAR]V _] REQUEST
RECEIVE gf‘“’ 10
cLock MPU WRITE smu SEND
TRANSMIT FROM (o) siGNAL cmr SELECT 10
CLOCK - MPU REGISTER ' FROM FROM MPU MODEM
SELECT MODEM ADDRESS DATA
FROM LINES CARRIER
MPU DETECT
ADDRESS FROM
LINE MODEM

Fig. 9.30 Register select line

MPU ACIA
SYSTEM mMC6850

RECEIVE
MODEM
TRANSMIT |~ MCeBe0
Fig. 9.31 Modem control line

Lt

M6800 Microcomputer Family 193

Serial Data Lines

The ACIA has two lines for transfer of data. The Transmit Data (TX
DATA) line is used to send, and the Receive Data (RX DATA) line to receive,
data from a peripheral. Before transferring data, the ACIA will add the start
bit automatically. The number of stop bits and odd or even parity will also be
specified in the data word per instructions via bits 2, 3, and 4 of the control
register. As data is received over the receive data line, the ACIA will use the
parity bit to check the accuracy of the number of ““1”'s received, and it will
strip the start, stop, and parity bits from the data word before converting the
data bits to a parallel format for transfer to the MPU over the data bus.

Receive Data (RX DATA) The receive data line is a high-imped-
ance TTL-compatible input through which data is received in a serial format.
Internal synchronization for detection of data.is possible with clock rates of
16 or 64 times the bit rate. Data rates in the range of 0 to 500,000 bits per
second are possible with external synchronization (in the - 1 mode).

Transmit Data (TX DATA) The transmit data ouzput line is used
to transfer data in a serial format to a modem or peripheral. Data rates in the
range of 0 to 500,000 bits per second are possible with external synchronization
(in the = 1 mode).

External Clock Inputs

Separate high-impedance, TTL-compatible inputs are provided for
clocking of transmitted and received data. Clock frequencies of 1, 16, or 64
times the data rate may be selected.

Transmit Clock (TXC) The transmit clock input is used for clock-
ing transmitted data. The transmitter initiates data on the negative transition
of the clock.

Receive Clock (RXC) The receive clock input is used for syn-
chronization of received data. The receiver strobes the data on the positive
transition of the clock. (In the = 1 mode, the clock and data must be synchro-

. nized externally.)

Transmit Data Register (TDR)

The transmit data register, an eight-bit register within the ACIA, is
used to hold the data from the MPU (converted from parallel format to serial
format) until it is transferred. The data is written into the transmit data register
on the negative transition of the enable (E) signal after the ACIA has been
addressed through the CSO, CS1, and 'CS2 lines and the RS line is a “1"" and
the R/W line is a *“0”". Writing data into the transmit data register causes the
Transmit Data Register Empty (TDRE) bit in the status register to go low
(*0”). After the TDRE bit goes low, data will be transmitted. If the transmitter
is idling (no character being transmitted), then the transmission will occur

194 > \ Basic Microprocessors and the 6800

‘within one bit time of the trailing edge of the write command. If previous data
is being transmitted, it will be transferred upon completion of the previous
transmission. After the data has been transferred, the TDRE will be changed
to a “1”, indicating that TDR is empty.

-

Receive Data Register (RDR)

The receive data register, an eight-bit register within the ACIA, holds
the data that is transferred from the modem or peripheral to the ACIA. After
the receive data register is full, the data is ready for transfer to the MPU over
the parallel data bus, and the Receive Data Register Full (RDRF) bit in the
status register will go high (**1), indicating that the register is full. The RDRF
bit’s going high may cause the IRQ bit of the status register to go high as well
(if enabled) and to remain high until the data is read into the MPU by
addressing the ACIA through the CSO, CS1, and CS2 lines and by setting the
RS and R/W lines to a “1”. After the data is read by the MPU, the RDRF
and IRQ bits will be reset to a *0”, but the data will remain in the RDR.

* Status Register (SR)

The Status Register (SR) is an eight-bit register within the ACIA that
maintains the current condition of internal ACIA activities (Fig. 9.32). A read
only register in that the MPU cannot store any data in it, it is used by the MPU
to check the status of certain events. To read its contents, the ACIA must be
selected through the CS0, CS1, and the CS2 lines, with the register select (RS)
line being held low (**0”) and the R/W line high (**17).

STATUS REGISTERS (SR)

7 6 5 4 3 2 1 ¢

IRQ | PE| OVRN| FE | CTS| DCD|TDRE|RDRF

Fig. 9.32 Status register

Bit 0—Receiver Data Register Full (RDRF)

“1”: (a) Indicates that the receiver data rcgister is full.
(b) The IRQ bit, if enabled, also gets set to a 1" and remains
set until the data is read by the MPU (see pg. 198).
“0”: (a) Indicates that the contents of the receiver data register have
been read into the MPU. The data is retained in the register.
(b) If there is a loss of carrier, the DCD line goes high, and the
RDREF bit is clamped at “‘0”, indicating that the contents of
the RDR are not current.
(c) A master reset condition also forces the RDRF bit to a “0”.

M6800 Microcomputer Family 195

Bit 1—Transmit Data Register Empty (TDRE)

“I”: (a) Indicates that the contents of the transmit data register

have been transferred and the register is ready for more
data.

(b) The IRQ bit, if enabled, also gets set to a *“1”’ and remains
set until a write operation to the transmit data register (see
pg. 198).

“0”: (a) Indicates that the transmit data register is full.

(b) When a “1” is present on the CTS pin and causes the CTS
(bit 3) of the SR to get set to a *“1” to indicate that it is not
clear to send, bit O of the TDRE will be clamped to a *0”.

Bit 2—Data Carrier Detect (DCD)

“1”: (a) Indicates that there is no carrier from the modem.
(b) The IRQ bit, if enabled, also gets set and remains set until
the MPU reads the status register and the receiver data
register or until a master reset occurs (see pg. 198).
(c) This causes the RDRF bit to be clamped at a “0”, inhibiting
further interrupts from RDRF.
“0”: (a) The carrier from the modem is present.

Bit 3—Clear to Send (CTS)

“1”. Indicates, via the high clear-to-send line from the modem, that
the latter is not ready for data.

“0”. Indicates, via the low clear-to-send line from the modem, that
the modem is ready for data.

Bit 4—Framing Error (FE)

“1”. Indicates that the received character is improperly framed by
the start and stop bit. This error is detected by the absence
of the first stop bit and indicates a synchronization error,
faulty transmission, or a break condition. The error flag is
set or reset during the receiver data transfer time and is
therefore present throughout the time that the associated
character is available.

“0”: Indicates that the received character is properly framed.

Bit 5—Receiver Overrun (OVRN)

“1”. Indicates that one or more characters in the data stream has
been lost, that is, a character or a number of characters has
been received, but not read, from the Receiver Data Register

196 : Basic Microprocessors and the 6800

(RDR) prior to subsequent characters being received. The
overrun condition begins at the midpoint of the last bit of the
second character received in succession without a read of the
RDR having occurred. The overrun does not occur in the
status register until the valid character prior to overrun has
been read. Character synchronization is maintained during
the overrun condition. The overrun error flag is reset after
the reading of data from the RDR. Overrun is also reset by
the master reset.
“0”: No receiver overruns have occurred.

Bit 6—PFarity Error (PE)

*“1”: Indicates that the number of highs (“1”’s) in the character does
not agree with the preselected odd or even parity. By defini-
tion, odd parity occurs when the total number of “1”’s, in-
cluding the parity bit, is odd. The parity error indication will
be present as long as the data character is in the RDR. If no
parity is selected, then both the transmitter parity generator
output and the receiver parity check results are inhibited.

“0”: No parity error occurred.

Bit 7—Interrupt Request (IRQ)

“1”: Indicates that there is an interrupt present that has caused the-
TRQ output line to go low. The interrupt will be cleared by
a read operation to the RDR, a write operation to the TDR,
or a read of the SR, followed by a read of the RDR if caused
by DCD. A master reset always clears this bit.

“0”: Indicates no interrupt present.

Control Register (CR)

The Control Register (CR), an eight-bit register within the ACIA, is
used by the MPU to control the transmitting and receiving of serial data (Fig.
9.33). It is a write only register since the MPU cannot read it. To write into
it, the ACIA must be selected via CSO, CS1, and CS2, and both the RS line
and the R/W line must be low (**0”).

CONTROL REGISTER (CR)

6[5 4lalz1¢

Transmitter Word Counter
Control Select Divide

k————neceiver Interrupt Enable
Fig. 9.33 Control register

m-— 20|

M6800 Microcomputer Family 197

Bits 0 and 1—Counter Divide Select Bits (CDS)

These two bits determine the divide ratios utilized in both the trans-
mitter and receiver sections of the ACIA. They are also used for master reset
of the ACIA, which clears the status register (except for external conditions
on CTS and DCD) and initializes both the receiver and the transmitter. Master
reset does not affect other control register bits. After a power failure or restart,
the ACIA must be reset before setting the clock divide ratio. Bit patterns for
the various functions are shown below.

Ch1 CRo Function
0 0 + 1
0 1 <16
1 0 — 64
1 1 Master reset

Bits 2, 3, 4—Word Select Bits (WS)

The programmer has the option of selecting the word length, number
gf 1stop bits, and type of parity by using the proper bit pattern from the chart
elow.

B4 B3 B2 Word Length + Parity + Stop Bits
0 0 0 7 Even 2

0 0 1 7 Odd 2

0 1 0 7 Even 1

0 1 1 7 Odd 1

1 0 0 8 None 2

1 0 1 8 None 1

1 1 0 8 Even 1

1 1 1 8 Odd 1

Bits 5 and 6—Transmitter Control Bits (T C)

‘ The status of bits 5 and 6 of the control register provide for control
of the interrupt from the Transmit Data Register Empty (TDRE) condition,
the Request To Send (RTS) output, and the transmission of a break level
(space), as shown below.

198 " Basic Microprocessors and the 6800

"CRS CRS5 Function
0 0 The RTS pin is /ow and Transmit Interrupts are inhibited.

This is the code used when requesting that the
communications channe! be set up. It is not clear to send

data yet. -

0 1 The RTS pin is /ow and the communications channel has
been set up. Therefore, this code is used to generate IRQs
via the TRDE bit in the Status Register.

1 0 The RTS pin is high and transmit interrupts are inhibited.
This code can be used to “'knock down” the
communications channel.

1 1 The RTS pin is /ow (keep up communications channel) and

a break signal (low level on transmit data out line) is
transmitted. This is used to interrupt the remote system.

Bit 7—Receiver Interrupt Enable (RIE)

“1”: Enables interrupts caused by:
(a) Receiver Data Register Full (RDRF) going high.
(b) A low-to-high transition on the Data Carrier Detect
(DCD) signal line.
“0”: Inhibits interrupts caused by RDRF or by the loss of receive
data carrier.

FROM POLLING ROUTINE
{MAIN PROGRAM)

RETURK 10
MAIN PROGRAM

OR POLL
OTHER DEVICES

WRITE WORD
T0 TOR
]
CONTINUE ERROR RTI
POLLING ROUTINE {RETURN TO
ROUTINE MAIN PROGRAM)

Fig. 9.34 Flowchart of transmit sequence

WP S

-rp-

M6800 Microcomputer Family 199

Power On

After the system power is applied, the ACIA master reset should be
set by the initialization program, which stores a “1” in CRO and CR1 of the
ACIA control register. After master reset, the variable clock divide ratio bits,
the transmitter interrupt bits, and the receiver interrupt bit of the ACIA
control register should be set by the initialization program.

Transmit Sequence

The flowchart in Fig. 9.34 illustrates a typical sequence followed in
transmission of serial data (for an example of ACIA programs, see Chap. 11).

Receive Sequence

The flowchart in Fig. 9.35 illustrates a typical sequence followed in

FROM POLLING ROUTINE
(MAIN PROGRAM)

NO RETURN T0
MAIN PROGRAM
OR POLL
OTHER DEVICES

CONTINUE LOSS OF
POLLING CARRIER
ROUTINE ROUTINE
FRAMING ERROR
ROUTINE

OVERRUN ERROR
ROUTINE

PARITY ERROR
ROUTINE

READ WORD
INTO MPU

l

RTI
{RETURN TO
MAIN PROGRAM)

Fig. 9.35 Flowchart of receive sequence

| M6800 Microcomputer Family 201
200 " Basic Microprocessors and the 6800

: ; i ssor for a maximum of 9.5 usec?
the receiving of serial data by the ACIA (for an example of an ACIA program, 13. thCh pin can halt the mncrogroc;: ivers?
Chap. 11) 14. Which pin refreshes the data bus drivers! . t
see p- 20 15. Which pin indicates that the address bus and the data bus have gone three-state
during a halt?
Problems) _ 16. Which output pins cannot be three-stated?. ' .
Microprocessor 17. Determine the state of the condition code bits after the following operations:
. How many bits does each of the following registers contain? (a) ABA
@A @) X A=1111111 A4+B=___ H=__N=__
®B_ (&) PC B = 0000 0001 Z=_V=__C=__
’ c) CC () Sp
-2. How many bits wide is the data bus? The address bus? (v) DECA
- Running at the maximum rated clock frequency, what is the time required to A = 0000 0000 A= H=__N=__
execute the shortest instructions on the 6800? ‘ Z=_V=_ C=__
- Where does the MPU get the program starting address upon first starting up? (c) LDA A #01
(a) It clears the program counter (sets to zero) and therefore always A=__ _H=_N=__
starts a program at 0000. Z=_V=_C=__
(b) It goes to the program starting address set up by the front panel (d) INC A
switches of the microcomputer. "t A= H=__N=__
(¢) It fetches an address for the program start from the two highest ' A = 0111 B 7 = V=_C=__
bytes in memory corresponding to FFFE and FFFF on the address T)
bus. 18. What is the value of the program counter (PC) after completion of the follow-
(d) It always starts executing a program at addresses FFFE and : ing interrupt sequences:
FFFF. '

(e) The MPU inherently knows where to start a program and will
automatically set the program counter to the proper address without

' _ (a) After an IRQ FFFF g g
being directed. (b) After an NMI ‘;';Eg R
- What is the state (0 or 1) of each of the following condition code register bits (c) After an SWI FFFC F C
after instruction LDA A #S3$FF (load accumulator A with hexadecimal num- (d) After restart FFFB 0 0
ber FF) is executed? . FFFA F_D
; FFF9 8 0
(a) Blt N . FFF8 F D
(b) Bit Z
(c) Bit V
. If the interrupt bit (I bit) is set to a ““1”” and a WAI instruction is encountered, Memories

how can the MPU exit from this situation?

19. How many bytes in a MCM6830 ROM?
. Assume the address of the stack pointer is hex 8B. What address will each of

o d) 1024

the MPU registers be stored in if an interrupt occurs? (a) 128 EC)) 4096
. If a system has two PIAs and two ACIAs, how does the MPU know which ' (b) 256
device causes an interrupt? (c) 512

. How many locations can be addressed by the MPU in hex? In decimal?

10.
1.
12.

Which pin can halt the processor for an indefinite amount of time?
Which interrupt pin can be masked?

Which pin indicates that a number on the address bus is an arithmetic oper-
and?

20. Which pin(s) on the MCM6810 and MCM&6830 is (are) three-state?

(a) Data bus (d) Chip selects
(b) Read/Write (e) All of the above

(c) Address bus

r

202 - ’ Basic Microprocessors and the 6800 M6800 Microcomputer Family 203
21. Why doesn’t the MCM6830 ROM have a R/W pin? < PAO
22. What are the purposes of the positive and negative chip selects on the ROMs DDRA : 2112
and RAMs? «— PA3
23. What are the contents of the last eight ROM locations in any system? — PA4
24. What power supply voltages are required for the MCM6810 RAM and « PA5 - PAD
MCM6830 ROM? < PA DDRA N
« PA7 <« PA2
(@ +5, —12 d +5, =5 MC6821 — PA3
®) +5 (e) None of the above PIA — PA4
(c) +15, +5, —15 ‘ _ : sg(‘) : :22
25. What is the organization of the MCM6810 RAM? DDRB — PB2 < PA7
- PB3 MC6821
(a) 1024 x 1 (d) 128 bytes (128 X 8) - PB4 PIA
() 512 X 4 () 1024 bytes (1024 X 8) - *;gg - igf
(c) 4K bytes (4096 X 8) - PB7 DDRB - PB2
PiA < pos
(a) — PB5
26. How many registers are in the PIA? «~ PB6
27. How many register select pins are in the PIA? — PB7
28. How many total lines can we have to the “outside world” on a PIA?
29. Although the A side and B side of the PIA are identical in most respects, there , < PAO ‘ (b)
are two differences. One difference is in the internal 1/0 construction; the other DDRA - Ei;
difference is that . —~ PA3
(a) The A side can be either input or output on the eight data lines, « PA4
whereas the B side can only be output. : gig « PAD
(b) The B side has no control register. — PA7 DDRA — PA1
(c) The A side does not have the “bit following” mode capability. MCE821 : iﬁg
(d) Both A and B side interrupts are reset as a result of a read of the PIA — PA4
A side data register, whereas only the B side interrupts are reset as - PBO _ , — PA5
a result of a read of the B side data register. DDRB : Eg; — PAB
(¢) Reading from the A side or writing to the B side causes the -~ PB3 : — PA7
handshake or pulse modes on the respective side if it is programmed - PB4 Mce821
for one of those modes. < PB5 ; PIA - PBO
30. Can we have three inputs and five outputs on the PIA A side? : ';gg DDRB < PB1
31. How does the microprocessor know whether it is the A side or the B side which : ggg
causes an interrupt? (Recall that both the IRQ lines from both sides are ©) - PB4
normally tied together.) : « PB5
32. How can six registers be addressed with only two register selects? ~ PB6
33. After restart, what steps must be taken before the PIAs can be used? -~ PB7

34. In each of the following diagrams, fill in the bits of the data direction registers

that match the I/0 lines. @

.

204 »

: Basic Microprocessors and the 6800

35. In the following diagrams, fill in
control lines as specified.

CA1
CA2

li

CRA

MC6821 piA

(a) CA1—Negative edge, masked
CA2—Positive edge, unmasked
CB1—Positive edge, masked
CB2-—Negative edge, unmasked

1

CA1
CA2

i

CRA

CRB

l: 0 l 1 l ,
CB1 | «~
MC6821 PIA cB2 | -

(c) CAl—Positive edge, unmasked
CAZ—Qne
CB1—Negative edge, masked
CB2—Handshake mode

- 36. In the following diagrams, determine the dat
and B sides with the logic levels shown on

shown in the registers.

(b) CAI1—Positive edge, masked
CA2—Pulse mode

CBI—Positive edge, unmasked
CB2—Zero

CA1 |* «
CA2 | —

CRA
Lol T T 137717

CRB
I I I

cB1 | «
MC6821 PIA CBiJ -

(d) CA1—Negative edge, unmasked
CA2—Handshake mode

CB1—Negative edge, unmasked
CB2—Pulse mode

a that would be read from the A
the I/0 lines and with the data

M6800 Microcomputer Family

L = Low logic level

00000000

11111111

00000000

00000000

CAl | «
caA2 | —
CRA
Lolol T T 97 7]
CRB
Lolo T T [T]
cBY | «
MC6821 PIA cB2 | —

PAO
PA1
PA2
PA3
PA4
PA5
PAG
PA7
PDRA
DDRA
PDRB
DDRB
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

H = High logic level

il ol ol aull el sl el o

RRREARR

00001111

00000000

01110111

00001111

ITITIIIIT

mann

(a) A side data
B side data

PAO
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PDRA
DDRA
PDRB
DDRB
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

(b) A side data
B side data

00000001

11101101

11111010

01010011

PAO
PA1
PA2
PA3
PA4
PAS
PA6
PA7
PDRA
DDRA
PDRB
DDRB
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

LT

rFIIrrrxIr

11011010

00110010

10000001

01100110

IIrrrrrrr

PAO
PA1
PA2
PA3
PA4
PAS
PA6
PA7
PDRA
DDRA
PDRB
DDRB
PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

(c) A side data
B side data

(d) A side data
B side data

[=]

IXxTIXTIrCrrrer

IR

rIrICIrzxT

I IrrIrCrIIT

IrrIIrCrrT

R

B

38.

39.

40.

37. Each PIA shown in the followin

206 5

Basic Microprocessors and the 6800

»

Determine the control line that caused the interrupt in each case.

< CA1
CRA «— CA2 CRA :g:;
M1Io]ol1]1[1E ILLo[ohhh]'ﬂﬂ
e o
CRB CRB
[1ToToToTo 1 10] < cB1 UloT1ToTo 1 0]0]
= Gpe = cor
(a) (b)
«— CA1
CRA — CA2 CRA :82;
1lo[1TiTo[10]0] (1 To[1ToTo 1 0]1]
MC6821
o Mo
CRB CRB
(e lilie | _ [Te[ileTiliTiTe] | _
© (d)

ACIA

During serial transmission at 300 baud
lr)r.li’t’ted each second if each character h
1t?
If the ACIA control register word select
external clock pulses are needed in the 16
and the information bits?
What does ASCII stand for?
(@) American Standard Code for Information Interchange
(b) A Standard Communication—Version 2
(¢) Asynchronous Standard Code—Version 2
(d) Asynchronous Serial Code in Industry

» how many information bits are trans-
as seven information bits with no parity

bits contain a hex 5, how many
mode to transfer both the start bit

g diagrams has interrupted the processor.

41

42,
43.
44,
43,

47.

M6800 Microcomputer Family 207

Can the MC6850 ACIA be used to transmit eight-bit data other than ASCII
code serially?
How many registers in the ACIA are accessible from the data bus?
How are these registers selected with only one register select line?
What is the first thing that must be done to initialize the ACIA?
Which of the following bits in the status register could cause an interrupt?
(Choose all that apply.)
(a) RDRF (Receive Data Register Full)
(b) TDRE (Transmit Data Register Empty)
(c) DCD (Data Carrier Detect)
(d) CTS (Clear To Send)
(e) FE (Framing Error)
(f) OVRN (Receiver OverRuN)
(g) PE (Parity Error)

. If we were using odd parity, give the parity bit (0 or 1) for the following data
bits:
(a) 1101100
(b) 0000000
(c) 1100001

What bit pattern (for bits 4, 3, and 2 only) should we write into the control
register to send/receive from a standard 10-character/sec. model 33 Teletype
machine? (Assume even parity.)

System

. Assume, as part of your system, that you have two MCM 6810 RAMs that start

at the very bottom of memory. Your program is to check the first five bytes
of the second RAM. If the contents of that RAM location is an odd number,
invert each bit and store this result back in that RAM location; if an even
number, clear that RAM location. Generate a flowchart and write a program
to accomplish the above task. The program is to start at hex location 2000.

