CHAPTER 4

USING THE ASSEMBLER/DISASSEMBLER

Integrated into the MC68000 Educational Computer firmware is an assembler/
disassembler function. The disassemble function is called as an option to the
Memory Display (MD ;DI) and Memory Modify (MM ;DI) commands, and also is used
during execution of system trace and the display register command. The assemble
function allows code entry and editing and is invoked by the Memory Modify (MM
;DI) command. Chapter 4 is a detailed discussion of the assembler/disassembler.

as)
[V
Q
o

1 INTRODUCTION scecocceccocssnscscscassoncsasnssosnssanssosnssasanansns
1.1 M68000 Assembly LANgUAGE seeeeescecessassserescnssccssssscccns
1.1.1 Machine-Instruction Operation CodeS s.eeeeceescescoccasanss
1.1.2 DirectivesS seeeceessccssccsscesscssscssssessssssscaassonane
1.2 Comparison with MC68000 Resident Structured Assembler «......
2 SOURCE PROGRAM CODING cceecccocccscsccccccsacscnssscscscsssncasans
2
2

I
L] L]

Source Line FOIMAt ceseesscessscsssccscsssscsssccsssccoscnasa
Operation Field ...eeeceeresessccosveveccsssssscsccsssssscas
Operand Field .seseeeseeecccssccssassassosccosccosassossnnss
Disassembled SoUrce LiNE seseececssceccessssssnccsarssscsonss
Mnemonics and DelimiterS cuieeeeeercssccccsassssccosnsscccnns
Character Set c.uieeeecceenssscccesscssessssssscsorassssonsns

InsStruction SUMMALY seceeeroecccssssssossssscccscssssscsosass
ArithmeticC OPerationS seeeeeessccecsssscssoesssssccncssssses
MOVE INStrUCLION teseeescesaseossesssscsscsesssssscossannes
Compare INStruCtionNS seseeecsevscsecsssessccssccsscecnssonss
Logical OperationS seeeeceesceccscessssscsscsssscssacscsses
Shift OperationS secessceccssessscsssccsscscsscosasesassessas 4-10
Bit Operations ..eceeccecescocsscecsccsssesssccsssssssonses 4-11
Conditional Operations .eeeeescececeseseccssncsscessssscans 4=11
Branch OperationsS cececeseccssscsssesassssssssssssssssssssss 4-11
Jump OperationS ceeesseccccecscsssccscscccsscssscssccssscss 4-12
DBCC INSErUCLION secescevsssscccsssssecessssssccnsnsssensss 4-12
Load/Store MUultiple seeescecceceseasscocscssssssnssosssssseeas 4-13
Load Effective AJAresSS seeveesscccssosscccecssssscsvcsasseee 4-14
Variants on Instruction TYPES ceesvecccscscscccsssesscccseaes 4-14

Addressing MOdeS seeeesccescccsssoscsccssocccccocsccsscvssess 4-15
Register Direct ModeS ..eeeeececcccecccccescecsscscccecccss 4-18
Memory AAAress MOAES seveeeevscsceoscscssconcosssccossscsces 4-18
Special AdAress MOdES .ceeeesscevssscsessssccsscccscssscceas 4-20
Notes on Addressing Options ...eeeeccccesscssccsescancessss 4=23
DC.W Define Constant DireCtive ceeeeeeececesceccccccecenees 4-24

ENTERING AND MODIFYING SOURCE PROGRAMS ..cceeccesssscceccassess 4-24

Invoking the Assembler/Disassembler ..eeeeccceccsssccccsssesse 4-26

Entering a Source LiNe seseeesesssocsscvsscccssccsssesssncsss 4-26

Program Entry/Branch and Jump AJdresSSesS ..eeesecesescssasssss 4~27

.1 Entering Absolute AJAreSSES seseccecssscccsccasssscecssasaes 4=27
.2 Desired Instruction FOIM ..eccecececessscccvresscsscvessasss 4—=28
.3

AU B DWW WW

BWWWWWRNNNONNNDONNNDN N NN R e

. . .
NdwnN -

. L]
|
O W

nbbnb;b.?bbbob

|
H
(e}

== =0 00 1O U W N

wWwN— O

o & o o
W N

Current LocatiOn @e 000 0ser0ens0s00 00 0re0s 000000000000 sRNRROGLS 4—28
Assembler Qltput/Pl’Ogram LiStingS CICICIR I B A A A A Y A IR A A I S I I I I O W) 4-29

Ll Sl T~ ~ Y - Yt g St St A g T S S i S T - - G S N SO . SO . N S Y - N T

v n
W=

e e o s o s »
Ut BddWWwwww
e o e e o o ¢ o

e o e ¢ o ¢ o o
« o e o o o .
U W N+
o o

K N R N N S N N N o O N i i i

o »

.

b B W ww N
« .

N =

Page

Error Conditions and MeSSAgeS seecessecsescsccsssscssseccssss 4-30
Trap ELYOLS ceecececsccosescassecscccsocsccssscssccscnscccns 4-30
Improper CharaCter c.e.cececssecccescsccscccscoccscsncacccse 4-31
NUMDEL TOO LALGE eeeecescsssasseccsssssacscsssssansseccsces 4-32
ASSEMDLY EFLOCLS seeeecccesescsscasessoscsccccscesccscoccccce 4-32

TESTING/EXECUTING PROGRAMS ccessceccccscscccccsccscccssccccccce 4-34

System Initialization ..eceeecsccccecccccccnccnccccccccncenns 4-34

Setting BreakpointS seecececscsscsccccccscocscscsoscocncocee 4-35

Program EXeCUtIion .eececcsccccsscscsccccccsosncscsscsccccncns 4-36

TEACE MOGJE evvecesssccasssasoeacsssssssssccscsscssssscsasaveccss 4=37

Inserting and Deleting Source Lines ..ceeeececcccscccccacasns 4-39

SAVING PROGRAMS +ecececcccscsocsscsasessssssscsscscsscssscassass 4-42

Saving Programs On TAPE eeececscsoscsccssscccscsscssacscscsce 4-42

Loading and Verifying Programs from Tape «eeeeeeeccecccccscsss 4-43

Upload to @ HOSEL eeeecesceccsrcescscccccccccoscscascssacccnne 4-44
EXORCISEr @S HOSL eeeecececsccscsascsscscsscsscascascssasces 4-45
EXORMACS @S HOSL seeeeevecccccssscossscsscnsosscsssncsscses 4-46

Download from @ HOSt eeeececscesscavososccsscacsscccscsscsnsss 4-47
EXORCISEr AS HOSE seveeeccssccssccssscssecssncncscnscansess 4-47
EXORMACS AS HOSE seeeceocecsccsosasssscscsacsaccccasssscsess 4=47

CHAPTER 4

USING THE ASSEMBLER/DISASSEMBLER

4,1 INTRODUCTION

Included as part of the MC68000 Educational Computer firmware is an assembler/
disassembler function. The assembler/disassembler is an interactive assembler/
editor in which the source program is not saved. Each source line is translated
into the proper MC68000 machine language code and is stored in memory on a
line-by-line basis at the time of entry. In order to display an instruction,
the machine code is disassembled and the instruction mnemonic and operands are
displayed. All wvalid MC68000 instructions are translated. The mnemonic
ILLEGAL, described in Appendix B of the MC68000 User's Manual, is not recognized
by the educational computer assembler. Also, refer to paragraph 4.2.2.4 for
restrictions on the use of the mnemonic CCR.

The educational board assembler is effectively a subset of the MC68000 Resident
Structured Assembler. It has more limitations than the resident assembler, such
as not allowing line numbers and labels; however, it is a powerful tool for
creating, modifying, and debugging MC68000 code.

4.1.1 M68000 Assembly Language

The symbolic language used to code source programs for processing by the
assembler is called M68000 assembly language. This language is a collection of
mnemonics representing:

. Operations

- MC68000 machine-instruction operation codes
— Directive (pseudo-op)

. Operators

. Special symbols

4,1.1.1 Machine-Instruction Operation Codes. That patt of the assembly
language that provides mnemonic machine-instruction operation codes for the
MC68000 machine instructions is described in the MC68000 16-Bit Microprocessor
User's Manual, MC68000UM. The user should reference this manual.

4.1.1.2 Directives. The assembly language can contain mnemonic directives
which specify auxiliary actions to be performed by the assembler. Directives
are not always translated to machine language.

Assembler directives assist the programmer:
. In controlling the assembler output
. In defining data and symbols
. In allocating storage
The educational board assembler recognizes only one directive called define

constant (DC.W). This directive is used to define data within the program.
Refer to paragraph 4.2.4 for a description of this directive.

4-3

4.1.2 Comparison with MC68000 Resident Structured Assembler

There are several major differences between the MEX68KECB assembler and the
MC68000 Resident Structured Assembler. The resident assembler is a two-pass
assembler that processes an entire program as a unit, while the educational
board assembler processes each line of a program as an individual unit. Due
mainly to this basic functional difference, the capabilities of the TUTOR
assembler are more restricted:

a. Label and line numbers are not used. - Labels are used to reference other
lines and 1locations in a program. The one-line assembler has no
knowledge of other program lines and, therefore, cannot make the required
association between a label and the 1label definition located on a
separate line,

b. Source lines are not saved. - In order to read back a program after it
has been entered, the machine code is disassembled and then displayed as
mnemonic and operands.

c. Limited error indication. - The one-line assembler will show a question
mark (?) under the portion of the source statement where an error
probably occurred, or will display the word "ERROR" or other short
message. In contrast, the resident assembler generates specific error
messages for over 60 different types of errors.

d. Only one directive (DC.W) is accepted.
e. No macro operation capability is included.
f. No conditional assembly is used.

g. Several symbols recognized by the resident assembler are not included in
the MEX68KECB assembler character set. These symbols include !, >, and
<. Two other symbols, * and /, each have multiple meanings to the
resident assembler, depending on the context, but only one meaning to the
MEXGS8KECB assembler. Finally, the ampersand character (&) specifies a
decimal number when used with the ECB assembler (although numbers with no
prefix are assumed to be decimal) while this symbol represents a logical
AND function to the resident assembler. Paragraph 4.2.1.5 describes the
MEX68KECB assembler character set.

Although functional differences exist between the two assemblers, the one-line
assembler is a true subset of the resident assembler. The format and syntax
used with the TUTOR assembler are acceptable to the resident assembler except as
described in g. above.

4.2 SOURCE PROGRAM CODING

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line and must be
either an executable instruction or a DC.W assembler directive. Each source
statement follows a consistent source line format.

4,2.,1 Source Line Format

Each source statement is a combination of operation and, as required, operand
fields; line numbers, labels, and comments are not used. The general format is:

sp <operation field> sp [<operand field>]

The space (sp) must be the first character of each line. This is to be
consistent with the resident assembler, which expects the first field of each
line to be either a space or a label. Because the TUTOR assembler never allows
a label, the first character must always be a space.

4.2.1.1 Operation Field. The operation field must follow at least one space
(more can be used) and entries can consist of one of two categories:

a. Operation codes - which correspond to the MC68000 instruction set, or

b. Define constant directive - the DC.W is recognized to define a constant
in a word location. This 1is the only directive recognized by the
assembler.

The size of the data field affected by an instruction is determined by the data
size code. Some instructions and directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size applicable to that instruction will be assumed. The size code need not be
specified if only one data size is permitted by the operation. The data size
code is specified by a period (.), appended to the operation field, and followed
by B, W, or L, where:

Byte (8-bit data)
Word (the usual default size; 16-bit data).
Long word (32-bit data)

rEw
W

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(A0) ,Al Long word size is assumed (.B,.W not allowed); this
instruction loads effective address of first operand
into Al.

ADD.B (A0) ,DO This instruction adds the byte whose address is (A0) to

lowest order byte in DO.

ADD D1l,D2 This instruction adds low order word of D1 to low order
word of D2. (W is the default size code.)

ADD.L A3,D3 This instruction adds entire 32-bit (long word)
contents of A3 to D3.

Example (illegal):
SUBA.B #5,Al Illegal size specification (.B not allowed on SUBA).
This instruction would have subtracted the value 5 from

the low order byte of Al; byte operations on address
registers are not allowed.

4-5

4.2.1.2 Operand Field. 1If present, the operand field follows the operation
field and is separated from the operation field by at least one space. When two
or more operand subfields appear within a statement, they must be separated by a
comma. In an instruction like ' ADD D1,D2' the first subfield (Dl) is generally
applied to the second subfield (D2) and the results placed in the second
subfield. Thus, the contents of D1 are added to the contents of D2 and the
result is saved in register D2. In the instruction ' MOVE D1,D2' the first
subfield (D1) is the sending field and the second subfield (D2) is the receiving
field. In other words, for most two—operand instructions, the general
format ' opcode source,destination' applies.

4.2.1.3 Disassembled Source Line. The disassembled source line may not look
identical to the source line entered. The disassembler makes a decision on how
to represent a numerical value based on how it interprets the number's use. If
the number is determined to be an address or a "would-be" address, it is
displayed in hexadecimal; everything else is decimal. For example,

MOWE.L $#$1234, $5678
disassembles to
005000 21FC000012345678 MOVE.L #4660,500005678

Also, for some instructions, there are two valid mnemonics for the same op code,
or there is more than one assembly language equivalent. The disassembler may
choose a form different from the one originally entered. As examples:

a. BRA is returned for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two
branch instructions. The BT form (branch conditionally
true) has the same op code as the BRA instruction. Also,
DBRA (decrement and branch always) and DBF (never true,
decrement, and branch) mnemonics are different forms for
the same instruction. In each case, the assembler will
accept both forms,

4.2.1.4 Mnemonics and Delimiters. The assembler recognizes all MC68000
instruction mnemonics except ILLBEGAL. Numbers are recognized as both decimal
and hexadecimal, with decimal the default case (note that this is reverse to the
TUTOR commands) s

a. Decimal - is a string of decimal digits (0-9) without a prefix (default)
or preceded by an optional ampersand (&). Examples are:

1234
&1234

b. Hexadecimal - is a string of hexadecimal digits (0-9, A-F) preceded by a
dollar sign ($). An example is:

SAFES

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a long word
boundary if the string contains more than two characters.

005000 5300 DC.W 'st
005002 223C41424344 MOVE.L #'ABCD',Dl
005008 3536 DC.W ‘56"

NOTE

The MC68000 has seventeen 32-bit registers (D0-D7, A0-A6, SSP, USP)
in addition to a 32-bit program counter (24 bits available) and a 16—
bit status register. Registers D0-D7 are used as data registers for
byte, word, and long word operations. Registers A0-A6 and SSP and USP
are used as software stack pointers and base address registers; they
may also be used for word and long word data operations. All 17
registers may be used as index registers. Register A7 is a pseudo
register, used as the system stack pointer corresponding to either
SSP or USP, depending on the operating state.

The following register mnemonics are recognized by the assembler:
DO-D7 Data Registers

AQ-A7 Address Registers

Address register seven represents the system stack pointer of the
active system state.

usp User stack pointer. Used only in privileged instructions which
are restricted to supervisory state.

CCR Condition code register (low 8 bits of SR)

SR Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

PC Program Counter. Used only in forcing program counter-relative
addressing

4.2.1.5 Character Set. The character set recognized by the MEX68KECB assembler
is a subset of ASCII, and these are listed below:

a. The uppercase letters A through Z

b. The integers 0 through 9

c. Arithmetic operators: + -

d. Parentheses ()

e. Characters used as special prefixes:

(pound sign) specifies the immediate form of addressing
(dollar sign) specifies a hexadecimal number

(ampersand) specifies a decimal number

® R N =FF

(commercial at sign) specifies an octal number

oe

(percent sign) specifies a binary number
' (apostrophe) specifies an ASCII literal character

f. Five separating characters:

Space

, (comma)
. (period)
/ (slash)
(dash)

g. The character * (asterisk) indicates current location.

4.2.2 Instruction Summary

The following paragraphs summarize the types of MC68000 instructions, their
variations, and addressing modes. The MC68000 User's Manual describes the
MC68000 instructions and addressing modes in greater detail.

4.2.2.1 Arithmetic Operations. The MC68000 instruction set includes the
operations of add, subtract, multiply, and divide. Add and subtract are
available for all data operand sizes, including extended, and also for address
operands.

Multiply and divide may be signed or unsigned. Operations on decimal data (BCD)
include add, subtract, and negate. The general form is:

OPERATION.SIZE SOURCE ,DESTINATION
Example:
ADD.W D1,D2 Adds low order word of D1 to low order word of D2.

SUB.B #5,(Al) Subtracts 5 from the byte whose address is contained in Al.

4-8

4.,2,2.,2 MOVE Instruction. The MOVE instruction is used to move data between
registers and/or memory. These moves include register-to—-register, memory-to-
memory, memory-to-register, and register—to-memory transfers. The general form
is:

MOVE.SIZE SOURCE ,DESTINATION
Examples:
MOVE D1,D2 Moves low order word of Dl into low order word of
D2.

MOVE.L $02000,503000 Moves long word addressed by $02000 into long word
addressed by $03000.

MOVE.W #'A',1000 Moves word with value of 'A'00 into byte addressed
by &1000.

MOVE $2000,A3 Moves word addressed by $2000 into low order word
of A3.

The MOVEQ mode always specifies a 32-bit destination operand and is, therefore,
used only for a MOVE.L operation. The source data is eight bits and is sign-
extended to a 32-bit value.

4,2.2.3 Compare Instructions. The general formats of the compare and check
instructions are:

CMP.SIZE OPERAND] ,OPERAND,
CHK BOUNDS ,REGISTER

where operand; is compared to operand, by the non-destructive subtraction of
operand; from operand, without altering operand; or operandj.

Condition codes resulting from the subtraction include: N set for negative
result, Z set for zero result, V set for overflow, and C set for a generated
borrow.

The CHK instruction will cause a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:
CMP.L $2000,D1 Compares long word at location $2000 with contents of
D1, setting condition codes accordingly.
CHK (a0) ,D3 Compares word whose address is in A0 with lower order

word of D3; if check fails (see the MC68000 User's
Manual), a system trap is initiated.

4.2.2.4 Logical Operations. Logical operations include AND, OR, EXCLUSIVE OR,
NOT, and two logical test operations. These functions may be done between
registers, between registers and memory, or with immediate source operands. The
general form is:

OPERATION.SIZE SOURCE ,DESTINATION
Example:
AND D1,D2 Low order word of D2 receives logical 'and' of low

order words in Dl and D2.

The destination may also be the status register (SR). When in the user state,
only the lower eight bits of the status register may be modified. The byte size
extension must be used. Note, however, that the mnemonic CCR is not accepted by
the assembler for logical operations. Instead, the mnemonic SR must be used
with a size extension of .B. CCR is used only with the MOVE instruction.

EXAMPLE: ANDI.B #5,SR instead of ANDI.B #5,CCR

4.2.2.5 Shift Operations. Shift operations include arithmetic and logical
shifts, as well as rotate and rotate with extend. All shift operations may be
either fixed with the shift count in an immediate field or variable with the
count in a register. Shifts in memory of a single bit position left or right
may also be done. The general form is:

OPERATION.SIZE COUNT ,OPERAND
Example:
LSL.W #5,D3 Performs a left, logical shift of low order word of D3

by 5 bits; .W is optional (default).

ASR #1,(A2) Performs a right, arithmetic shift of the word whose
address is contained in A2; since this is a memory
operand, the shift is only 1 bit.

ROXL.B D3,D2 Performs a right rotation with extend bit of low order
byte of D2; shift count is contained in D3.

4.2.2.6 Bit Operations. Bit operations allow test and modify combinations for
single bits in either an 8-bit operand for memory destinations or a 32-bit
operand for data register destinations. The bit number may be fixed or
variable. The general form is:

OPERATION BITNO,OPERAND
Example:

BCLR #3,544(A3) Tests bit number 3 in byte whose address is given by
address in A3 plus displacement of $44, sets or clears
the Z condition code, and clears the specified bit in
the destination.

BCHG D1,D2 Tests a bit in D2, reflects its value in condition code
Z, and then changes value of that bit; bit number is
specified in D1.

4-10

4.2.2.7 Conditional Operations. Condition codes can be used to set and clear
data bytes. The general form is:

OPERATION LOCATION
Example:
SNE (A5)+ If condition code 'NE' (not equal) is true, then set

byte whose address is in A5 to 1l's; otherwise, set that
byte to @'s; increment A5 by 1.

4.2.2.8 Branch Operations. Branch operations include a branch to subroutine,
an unconditional branch, and 14 conditional branch instructions. The general
form is:

OPERATION.EXTENT LOCATION
Examples:
003058 61A6 BSR $3000 Branch to subroutine at location $3000.
003FF0 670E BEQ.S $4000 Short branch to $4000, on condition "EQ".

003FF0 6600000E BNE.L $4000 Long branch to $4000, on condition "NE".

003FF0 BPL.S $3000 Short branch not allowed; displacement >
8 bits,

All conditional branch instructions are PC-relative addressing only, and may be
either one- or two-word instructions. The corresponding displacement ranges
are:

one-word -128...+127 bytes (8-bit displacement)

two-word -32768...+32767 bytes (16-bit displacement)
By default, the assembler will resolve all references, both relative and
absolute, by using the shorter form of the effective address in the operand
reference, if possible; otherwise, the longer form will be chosen. The user can
force the long form of the instruction by using the .L suffix.
In a short branch instruction, the operand must not reference the statement

which immediately follows it. This would result in a displacement value of 0,
which is recognized by the assembler as an error condition.

4-11

4.2.2.9 Jump Operations. Jump operations include a jump to subroutine and an
unconditional jump. The general form is:

OPERATION.EXTENT LOCATION
Example:
JMP 4 (A7) Unconditional jump to the location 4 bytes beyond
the address in A7.
JMP.L $2000 Long (absolute) jump to the address $2000.
JSR $3000 Jump to subroutine at address $3000.

Jumps may specify any control addressing mode as the destination location. All
references will use the shorter absolute address format, if possible; otherwise,
the longer format will be used. The default extent may be overridden on a
single jump operation to a label by appending "S" or "L" as an extent code for
the instruction.

4.2.2.10 DBcc Instruction. This instruction is a looping primitive of three
parameters: condition, data register, and address. The instruction first tests
the condition to determine if the termination condition for the loop has been
met and, if so, no operation is performed. If the termination condition is not
true, the data register is decremented by one. If the result is -1, execution
continues with the next instruction. If the result is not equal to -1,
execution continues at the indicated location. The address must be within
16-bit displacement. The general format of the instruction is:

DBcc DATA REGISTER,ADDRESS

4-12

4,2,2,11 Load/Store Multiple.

This instruction allows the loading and storing

of multiple registers. Its general format is:

MOVEM.SIZE REGISTERS,LOCATION (register to memory)
MOVEM,SIZE LOCATION,REGISTERS (memory to register)

where size may be either W (default) or L.

The "registers" operand may assume any combination of the following:
y

R1/R3/R6, etc., means Rl and R3 and R6
R1-R3, etc., means Rl through R3

The order in which the registers are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. See MOVEM instruction in
Appendix B of the MC68000 User's Manual for further details.

NOTE

Registers discussed here include data registers zero through seven
and address registers zero through seven but not the software
offset registers (RO through R7) used by TUTOR.

Examples:

MOVEM (A6)+,D1/D5/D7

MOVEM.L A2-A6,-(A7)

MOVEM (A7)+,A1-A3/D1-D3

MOVEM.L Al/A2/A3,5$2000

Load registers D1, D5, and D7 from three
consecutive (sign—-extended) words in memory,
the first of which is given by the address in
A6; A6 is incremented by 2 after each
transfer.

Store registers A2 through A6 in 5 consecu-
tive long words in memory; A7 is decremented
by 4 (because of .L); A6 is stored at A7;
A7 is decremented by 4; A5 is stored at A7,
etc.

Loads registers D1, D2, D3, Al, A2, A3 in
order from the six consecutive (sign-
extended) words in memory, starting with
address in A7 and incrementing A7 by 2 at
each step.

Store registers Al, A2, A3 in three consecu-
tive long words starting with location $2000.

4-13

4.,2.2.12 Load Effective Address. This instruction allows computation and
loading of an effective address into an address register. The general format
is:

LEA OPERAND,REGISTER
Example:

LEA (A2,D5) ,Al Load Al with effective address specified by
first operand; see later explanation of
addressing mode "address register indirect
with index" (paragraph 4.2.3.2).

4,2.2,13 Variants on Instruction Types

Certain instructions allow a "quick" form when immediate data within a
restricted size range appears as an operand. It is necessary for the programmer
to "force" such a form by appending a "Q" to the mnemonic op code (to indicate
"quick") on instructions for which such a form exists. If the specified quick
form does not exist, or if the immediate data does not conform to the size
requirements of the abbreviated form, an error will be generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations); these variants append an "A" to the instruction
mnemonic (e.g., ADDA, CMPA). This variant will be chosen by the assembler
without programmer specification, when appropriate to do so; the programmer need
specify only the general instruction mnemonic. However, the programmer may
"force" or specify such a variant form by appending the "A". 1If the specified
variant does not exist or is not appropriate with the given operands, an error
will be generated.

The CMP instruction also has a memory variant form (CMPM) in which both operands
are a special class of memory references. The CMPM instruction requires
postincrement addressing of both operands. The CMPM instruction will be
selected by the assembler, or it may be specified by the programmer.

The variations —— A, Q, and M — must conform to the following restrictions:

A Must specify an address register as a destination, and cannot specify
a byte size code (.B).

Q Requires immediate operand be in a certain size range. MOVEQ also
requires longword data size.

M Both operands must be postincrement addresses.

For example, the instruction
ADDQ #9,D0 Attempts to add value 9 to DO

will cause an assembly error, because the immediate operand is not in the valid
size range (1 through 8).

4-14

4.2,3 Addressing Modes

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addressing and data
organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the MC68000 User's Manual.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or long words must be even. Likewise, instructions
must begin on an even word boundary.

Individual bits within a byte (operand for memory destinations) or long word
(operand for data register destinations) may be addressed with the bit
manipulation instructions (paragraph 4.2.2.6). Bits for a byte are numbered 7
to 0, with 7 being the most significant bit position and 0 the least
significant. Bits for a long word are numbered from 31 to 0, with 31 being the
most significant bit position and 0 the least significant bit position.

31 7 0

MSB LSB

Table 4-1 summarizes the addressing modes defined for the MC68000, their syntax,
and significant constraints.

4-15

S31q 2§ :193s1bo1 sseippe

{(pasn 71° SSSTUN pOpUIIXD

-ubts ‘s3tq 91) 193s1bo1 Xopur se
pesn aq Aew 123sibo1 g 10 ¥ 3yl s3jou
{popusixa-ubrs ‘sitq g :IusweorTdsip
foanTosqe aq Isnu <i1dxad>

(suotado ou) s31q Z€ ST 92Z1S 193s1bai
!pspueixa-ubrs ‘s3tq 91 :3uswaderdsip
fa3nTosqe oq 3snu 1dxa>

(wa’uv) <adxa>
(uv‘uy) <adxa>

(uv) <adxa>

+(uv)

(uy) -

(uv)

udg

XSpuT Yyamm
3091TpuTr 193s1bo1 SS9IppY (@

JuauweorIdsSIP UM
30911put i93s1bo1 ssoippy (P

jusu®i1durlsod Yaim
1091Tputl 193S1b91 ssai1ppy (O

Jusuei1o0opai1d U3l IM
3091TpuUT 193S1H91 SS°1ppv (g

30911pUT 19311691 SSa1ppVY (B
SSo1ppvY A1ouws| (7
30911p 193S1b21 ssaippy (q
30911p 1931s1h81 e3lEQ (P

309110 193s1boy (T

SLNIWIWOD

XWLNAS

Jaow

SOpPOW SS8iptV *T-b I1gvl

4-16

* (4s) 19as1bo1 snmeas

ay3 10 ‘(dsn) z2e3utod oeas iesn Iyl

/ (dss) 193utod xjoe3s i1ostaiadns syl

4 (ds) 193utod yoe3s uelsAS ay3x 03 aould
—19321 31O0TTdwT 93w SUOTIONIJSUT SWOS

*SUOT3ONIASUT JUSLIND Y3 UO USPPTII
-18A0 ST 9Z1S 3[NEISP Y3 19Y3sym pue
Ssaippe uorieurissp ayl uo burpuadep
’s31q 9T 10 § 18Y3T@ ST JuawadeTdsip
oyl !Dd ay3 woij usweoeTdsIp e ST
SSoippe 9AT31093J9 9yl {uUoTIlonIisur 2o8d
10 (dog) youelq TRUOTITPUOD AQ pPayoAUT

T1° ‘M* ‘g° UITIM pesn aq Aeu

saouaiajal 3TOTTdUT 13y3o (g

aouai1a3a1 Dd 3rorrdul (¥

{aanTosqe aq 3Isnu <idxod> <1dxa>$ eaep aqerpsumI (O
popuaixa-ubrs ‘s31q g8 :3uswooerdsIp
{aantosqe oq asnu <adxad> (ug’od) <adxa>
{3usweorTdSIP pue XSpur UatM Dd paoiod (u¥¢’od) <adxa>
popua3lxeo-ubts ‘s31q 91 :3jusweoeTdsip
{oanTosqe aq 3Isnu <idxa>
{quasweorTdsSTP Yatm Od paoi1od (Od) <adxa> JusueorTdSIpP UatM Od (g
s31q Z€ ST buoT a3nyosqe
!popuajxa-ubis ‘s31q 91 ST 3JI0Us a3nosqe
$s3PWiIo] OM3 dIr 219U
!ssaippe aanTosqe ue Ajroads asnu adxa> <1dxa> 9anTosqy (e
Ssaa1ppy Tetoads (¢
SLNIWWOD XV.LNAS (a0

(P,3U0D) SOPOW SSIPPY *T-b FTEVL

4-17

4.2.3.1 Register Direct Modes. These effective addressing modes specify that
the operand is in one of the 17 multifunction registers (eight data and nine
address registers). The operation is performed directly on the actual contents
of the register. When an instruction is executed, references to A7 specify the
supervisor stack pointer if the supervisor state status bit is set in the status
register and the user stack pointer otherwise.

Notations: An Address register direct

where n is between 0 and 7

Dn Data register direct
Examples: CLR.L Dl Clear all 32 bits of D1
ADD Al A2 Add low order word of Al to low order
word of A2

4.2.3.2 Memory Address Modes. The following effective addressing modes specify
that the operand is in memory and provide the specific address of the operand.

Address Register Indirect

The address of the operand is in the address register specified by the register
field.

Notation: (An)

Examples: MOVE #5, (AS) Move the value 5 to word whose address is
contained in A5.

SUB.L (al) ,DO Subtract the value in the long word whose
address is contained in Al from DO.

Address Register Indirect with Predecrement

The address of the operand is in the address register specified by the register
field. Before the operand address is used, it is decremented by one, two, or
four, depending upon whether the operand size is byte (.B), word (.W), or long
(.L).

Notation: - (An)
Examples: CLR -(A2) Subtract 2 from A2; clear word whose
address is now in A2,
CMP.L -(A0) ,DO Subtract 4 from AQ; compare long word
whose address is now in A0 with contents
of DO.

4-18

Address Register Indirect with Postincrement

The address of the operand is in the address register specified by the register
field. After the operand address is used, it is incremented by one, two, or
four, depending upon whether the size of the operand is byte (.B), word (.W), or
long (.L).

Notation: (An)+

Examples: MOVE.B (A2)+,D2 Move byte whose address is in A2 to D2;
increment A2 by 1.

MOVE.L (A4)+,D3 Move long word whose address is in A4 to
D3; increment A4 by 4.

Address Register Indirect with Displacement

The address of the operand is the sum of the address in the address register and
the 16-bit sign—-extended displacement.

Notation: <expression>(An)

Examples: CLR.B 5(A0) Clear byte whose address is given by
adding 5 to contents of A0.

MOVE #2,10(A2) Move 2 to word whose address is given by
adding 10 to contents of A2.

Address Register Indirect with Index

The address of the operand is the sum of the address in the address register,
the 8-bit sign-extended displacement, and the contents of the index (A or D)
register.

Notations: <expression>(An,Rn.W) Specifies sign-extended low order word of
index register.

<expression>(An,Rn.L) Specifies entire contents of index register.

Examples: ADD 5(aAl,D2) ,D5 Add to low order word of D5 the word
whose address is given by addition of
contents of Al, the sign-extended low
order word of index register D2, and the
displacement 5.

MOVE.L D5,520(A2,A3.L) Move entire contents of D5 to long word
whose address is given by addition of
contents of A2, contents of entire index
register A3, and the displacement $20.

4-19

4.2.3.3 Special Address Modes. Special address modes use the effective
address register field to specify the special addressing mode instead of a
register number. The following table provides the ranges for absolute short and
long addresses.

32-bit address 16-bit representation of 32-bit address
00000000 0000

. . Absolute Short
00007FFF 7FFF
00008000

. No representation in 16 bits

. Absolute Long
FFFF7FFF
FFFF8000 8000

. . Absolute Short
FFFFFFFF FFFF

Absolute Short Address

The 16-bit address of the operand is sign extended before it 1is used.
Therefore, the useful address range is 0 through $7FFF and S$FFFF8000 through
SFFFFFFFF.

Notation: XXX

Example:

002500 4EF80400 JMP $400 Jump to hex address 400 specified
as a 16-bit sign-extended address.

Absolute Long Address

The address of the operand is the 32-bit value specified.

Notation: XXX

Examples:

007800 4EF900012000 JMP $12000 Jump to hex address 12000 specified
as a 32-bit address.

002500 4EF900000400 JMP.L $400 Jump to hex address 400 specified

as a 32-bit address. The long
address is forced by the .L option.

4-20

Program Counter with Displacement

The address of the operand is the sum of the address in the program counter
(current instruction location plus two) and the sign-extended 16-bit
displacement integer. The assembler calculates this sign-extended displacement
by subtracting the address of the displacement word (i.e., current instruction
address plus two) from the value in the operand field.

Notation: <expression>(PC) Forced program counter-relative; cannot
be used for branch instructions

The branch instructions (BRA, BSR, Bcc, DBcc) are a special case of the program
counter with displacement address mode. These instructions always use program
counter relative addressing; the displacement integer, however, can be either 16
or 8 bits long for the BRA, BSR, and Bcc instructions. An 8- or 1l6-bit
displacement is specified by an .S or .L, respectively, following the
instruction mnemonic. However, since these instructions allow only one address
mode, the program counter with displacement mode is not explicitly selected in
the source 1line. Instead, only the destination address of the branch is
specified as shown in the following examples. For all other instructions, the
program counter with displacement mode must be explicitly selected.

Examples:

001050 6700FFAE BEQ.L $1000 Branch if EQ condition code to $1000.
Displacement integer is 16 bits,

001050 6EOE BGT *+$10 Branch if GT condition code to 16
bytes past this instruction.

001050 4EFAF8AE JMP $900(PC) Force the evaluation of $900 to be

program counter-relative., Displace-
ment = $0900-$(1050+2)=$F8AE.

4-21

Program Counter with Index

The address is the sum of the address in the program counter, the sign-extended
8-bit displacement value, and the contents of the index (A or D) register. The
displacement is calculated in the same manner as above.

Notations: <expression>(PC,Rn.W) Forced program counter-relative

<expression>(PC,Rn.L) with index using word (default) or
long word index.

Examples:

005000

005000

001150

002030

NOTE:

AEFACOFE JMP $1100(PCQ) Force evaluation of $1100 to be
program counter-relative. Dis—
placement value is 16 bits.

JMP $1100(PC,A2) Destination address 1is out of
range; displacement value is only
8 bits for program counter with
index address mode.

4EFBAOAE JMP $1100(PC,A2) Force evaluation of $1100 to be
program counter-relative with
index. Lower 16 bits of A2 are
used as the index.

323B58CE MOVE $2000(PC,D5.L),D1 Force evaluation of $2000 to be
program counter—relative with
index. All 32 bits of D5 are used
as the index.

In the program counter with displacement and program counter with index
address modes, the expression represents the actual memory address. For
example, to jump to address $1050, the instruction JMP $1050(PC) might be
used. The assembler calculates the required displacement to reach
address $1050 from the current location. In the address register
indirect with displacement and the address register indirect with index
address modes, however, the expression represents the displacement rather
than the memory address —-- hence, the instruction JMP $1050(A0) will jump
to the memory address given by the contents of register A0 plus $1050.

Immediate Data

An absolute number may be specified as an operand by immediately preceding a
number or expression with a '#' character. The immediate character (#) is used
to designate an absolute number other than a displacement or an absolute
address.

Notation: #FXKX

Examples: MOVE #1,D0 Move value 1 to low order word of DO.

SUB.L #1,D0 Subtract wvalue 1 from the entire
contents of DO.

4-22

4.2.3.4 Notes on Addressing Options. By default, the assembler will resolve
all references, both PC relative and absolute, by using the shorter form of the
effective address in the operand reference, if possible; otherwise, the longer
form will be chosen.

On an instruction which does not allow a size code, the reference default format
may be overridden (for that instruction only) by appending .S (short) or .L
(long) to the instruction mnemonic.

The shorter form of the effective address for relative branch instructions is an
8-bit displacement; the longer format is a 16-bit displacement. For absolute
jumps, the shorter effective address is the 16-bit absolute short; the longer
format is the 32-bit absolute long mode. In either relative branches or
absolute jumps, if the shorter format is directed and the longer format is found
necessary, an error will occur.

A long form may be forced by following the instruction mnemonic with .L
Example:

BEQ.L $3050 If condition code 'EQ' (equal) is true, then branch to
$3050 (using the long form of the instruction).

In this case, the instruction size is forced to two words. An error will be
printed if the operand field is not in the range of an 16-bit displacement.

Default actions of the assembler have been chosen to minimize two common address
mode errors:

a. Displacement range violations

Relative branch instructions (Bcc, BRA, BSR) allow either 8-bit or 16-bit
displacements from the PC. On references in such instructions, the
default action is to use the 8-bit displacement if the destination
address is within that range; otherwise, the 16-bit displacement is used.

b. Inappropriate absolute short address
Absolute addresses may be short (16-bit) or long (32-bit). On references
with absolute effective address, the default action is to use the

absolute short form if the address can be represented in 16 bits with
sign extension; otherwise, the absolute long form is used.

4-23

4.2.4 DC.W Define Constant Directive
The format for the DC.W directive is:
sp DC.W <operand>

The function of the directive is to define a constant in memory. The DC.W
directive can have only one operand (16-bit value) which can contain the actual
value (decimal, hexadecimal, or ASCII). Alternatively, the operand can be an
expression which can be assigned a numeric value by the assembler. The constant
is aligned on a word boundary as word (.W) size is specified.

An ASCII string is recognized when characters are enclosed inside single quotes
('). Each character (7 bits) is assigned to a byte of memory, with the eighth
bit (MSB) always equal to zero. If only one byte is entered, the byte is left
justified. A maximum of two ASCII characters may be entered for each DC.W
directive.

Examples are:

001022 04D2 DC.W 1234 Decimal number

001024 AAFE DC.W SAAFE Hexadecimal number

001026 4142 DC.W 'AB' ASCII string

001028 5443 DC.W "TB'+1 Expression

00102A 4300 DC.W 'c' ASCII character is left justified

4,3 ENTERING AND MODIFYING SOURCE PROGRAMS

User programs are entered into the Educational Computer RAM using the one-line
assembler/disassembler. The program is entered in assembly language statements
on a line-by-line base. The source code is not saved as it 1is converted
immediately to machine code upon entry. This imposes several restrictions on
the type of source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use memory
addresses and to enter data directly rather than use labels.

Also, editing is accomplished by retyping the entire new source line. Lines can
be added or deleted by moving a block of memory data to free up or delete the
appropriate number of locations.

In order to more clearly describe the procedures used to enter, modify, and
execute a program, a specific example will be described. Figure 4-1 lists a
program that converts an ASCII coded number into its hexadecimal equivalent. An
ASCII character is in the lowest 8 bits of register DO when the program is
entered. Upon exiting, DO contains the equivalent hexadecimal digit (0 to F),
or an FF if the ASCII character does not correspond to a proper hex number.

4-24

