GETHEX

GTHX1
EXIT
GTHX2

ERROR

CMP.B #$30,D0
BLT.S ERROR
CMP.B #$39,D0
BGT.S GTHX2

AND.L #SF,DO
BRA *

CcMP.B #$41,D0
BLT.S ERROR
CMP.B #5546 ,D0
BGT.S ERROR
SUB.B #7,D0
BRA GTHX1
MOVE.L #SFF,DO
JMP EXIT

IS HEX NO. < 0?
NOT A HEX NO.
IS HEX NO. > 9?

SAVE ONLY LOWER 4 BITS
END OF ROUTINE

IS HEX NO. < 'A'?

NOT A HEX NO.

IS HEX NO. > 'F'?

NOT A HEX NO.

MAKE IT SMALLER —— A=10

ERROR CODE

NOTE: Converts ASCII digit in lowest 8-bit of register DO into
hex value. Returns equivalent 0-F or FF on error in DO.

FIGURE 4-1.

Example Program to Convert ASCII Digit to Hexadecimal value

For clarity, Figure 4-1 contains comments and labels. The program as it appears
after entry into the Educational Computer is shown later. Also, Figure 4-2
shows the ASCII character set for better understanding of the program.

b7 0 0 0 1 1 1 1
b8 0 0 1 1 0 0 1 1
0;& bb 0 1 0 1 0 1

b4} b3 | b2] b1 Column| 0 1 2 3 4 5_ 8 1
| | | |] Row | Hex 0 1 2 3 4 [] 7
0jJojojojo 0 NUL | DLE SP 0 @ P ’ p
0OJojo] 1 1 SOH | DC1 ! 1 A Q a q
OJOoJ1}0] 2 2 STX | DC2 " 2 B R b r
0101 11 3 3 ETX DC3 L4 3 C S c S
Oj1]0]0] 4 4 EOT DC4 $ 4 D T d t
0Oj1]0)11]5 5 ENQ | NAK % 5 E U @ u
0]1 110] 6 6 ACK | SYN & 6 F N t v
0 {1 1 117 7 BEL ETB ’ 7 G W g w
110j0]0f] 8 8 BS CAN (8 H X h X
1]J]OoJOo] 1% 9 9 HT EM) 9 | Y i y
tjoltr]of 10 A LF suB ¢ : J Z j z
110 1] 11 B Al ESC + , K [k {
1 110]0] 12 C FF FS < L \ | |
1 110)1]13 D CR GS - = M) m }
1 1 1]10]14 E SO RS . > N A n ~
1 1 1 1115 F St US / ? 0 — o DEL

FIGURE 4-2. ASCII Character Set

4-25

4.3.1 Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory Modify
(MM) and Memory Display (MD) commands:

MM <address> ;DI

where CR sequences to next instruction
.CR exits command

and
MD[{<port number>] <address> [count];DI

The Memory Modify (;DI option) is used for program entry and modification. When
this command is used, the memory contents at the specified location are
disassembled and displayed, followed by a "?". A new or modified line can be
entered if desired.

The disassembled line can be an MC68000 instruction or a DC.W directive. If the
disassembler recognizes a valid form of some instruction, the instruction will
be returned; if not (random data occurs), the DC.W $XXXX (always hex) Iis
returned. Because the disassembler gives precedence to instructions, a word of
data that corresponds to a valid instruction will be returned as the
instruction.

For the given example, the program will be entered starting at location $1000:
TUTOR 1.X > MM 1000;DI

001000 1005 MOVE.B D5,D0 ?

4.3.2 Entering a Source Line

A new source line is entered immediately following the "?", using the format
discussed in paragraph 4.2.1:

TUTOR 1.X > MM 1000;DI
001000 1005 MOVE.B D5,D0 ? CMP.B #$30,D0

When the carriage return is entered terminating the line, the old source line is
erased from the terminal screen, the new line is assembled and displayed, and
the next instruction in memory is disassembled and displayed:

TUTOR 1.X > MM 1000;DI

001000 0C000030 CMP.B #$30,D0
001004 FFFF DC.W S$FFFF ?
NOTE

If a terminal with a printer only (no CRT) is used, such as a TI 700
series device, the printer will overwrite the previous line. There-
fore, a clear printout of the new entry will not be made. This also
happens if the printer on Port 3 1is attached via the PA command.
Refer to Appendix B for operation with mechanical terminals.

4-26

Another program line can now be entered. Program entry continues in like manner
until all lines have been entered. A period is used to exit the MM command.

If an error is encountered during assembly of the new line, the assembler will
display the line unassembled with an "X" under the field suspected of causing a
problem, or an error message will be displayed. Errors are discussed in
paragraph 4.3.5.

4.3.3 Program Entry/Branch and Jump Addresses

Figure 4-3 shows the example program as it is inputted to the educational
computer assembler. Notice that the comments and labels used in Figure 4-1 are
not allowed; absolute addresses must be used for BRA and JMP instructions.

CMP.B #$30,D0 CMP.B #$30,D0
BLT * BLT $1022
CMP.B #$39,D0 CMP.B #$39,D0
BGT * BGT $1014
AND.L #SF,DO AND.L #SF,DO
BRA * BRA *

CMP.B #$41,D0 CMP.B #$41,D0
BLT * BLT $1022
BGT * BGT $1022
SUB.B #7,D0 SUB.B #7,D0
BRA $100C BRA $100C
MOVE.L #SFF,DO MOVE.L #SFF,DO
JMP $1012 JMP $1012

a) First entry b) With correct branch addresses

FIGURE 4-3. Example Program as Entered into Educational Computer

4.3.3.1 Entering Absolute Addresses. The absolute addresses are probably not
known as the program is being entered. For example, when the second line is
entered (BLT.S ERROR in Figure 4-1), the user does not know that the branch
address (ERROR MOVE.B #S$FF,D0) will be $1022. However, the user can instead
enter an "*" for branch to self, After the correct address ($1022) is
discovered, the second line can be re-entered using the correct value. This
technique can be used for forward branches and jumps. It is not required for
backward branches and jumps, such as the last line of the example, because the
required address is already known. If the absolute address is not within the
range of a short address, a long address must be specified by appending .L to
the mnemonic (BGT.L *).

4-27

4.,3.3.2 Desired Instruction Form. Care must be taken when entering source
lines to ensure that the desired instruction form is entered. If the quick form
of the instruction is wanted, it must be specified. For example:

005780 203C00000003 MOVE.L #3,D0 Assembles to the 6-byte instruction.
whereas
005780 7003 MOVEQ.L #3,DO0 Assembles to the 2-byte instruction.

If the PC-relative addressing mode is desired, it must be specified. For
example:

001000 41F803F0 LEA $3F0,A0 Assembles $3F0 as an absolute address.
whereas

001000 41FAF3EE LEA $3F0(PC) ,A0 Assembles $3F0 as a PC-relative address.

4,3.3.3 Current Location. To reference a current location in an operand
expression, the character "*" (asterisk) can be used. Examples are:

007000 6022 BRA *+524
007000 6000FFFE BRA.L *
007000 60FE BRA *

4-28

4.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the Memory Display (MD) command with
the ;DI option. The MD command requires both the starting address and the byte
count to be entered in the command line. When the ;DI option is invoked, the
number of instructions disassembled and displayed will be equal to the number of
instructions whose op code (first word of any instruction) is contained within
the byte count. The DC.W directive will also be displayed for any words of data
contained within the byte count.

Two techniques can be used to obtain a hard copy of the program using the MD
command :

a. The Printer Attach (PA) command is first used to activate the Port 3
printer. A Memory Display (MD) to the terminal will then cause a listing
on the terminal and on the printer.

b. An MD3 (Memory Display to Port 3) command using the ;DI option will cause
a listing on the printer only.

Figure 4-4 shows a listing of the example program. Note in the example that $2D
bytes are specified in the MD command. Only $2C bytes are required for the
program, and the additional single byte does not constitute a valid DC.W or op
code; therefore, the last byte is not displayed.

Note also that the listing does not correspond exactly to that of Figure 4-3.

As discussed in paragraph 4.2.1.3, the disassembler displays in hexadecimal any
number it interprets as an address; all other numbers are displayed in decimal.

TUTOR 1.X > MD 1000 2D;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
ooloocC 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D08 BLT.S $001022
00101A 6E06 BGT.S $001022
gololc 04000007 SUB.B #7,D0
00l020 60EA BRA.S $00100C
001022 203C000000FF MOVE.L #255,D0
001028 4EF81012 JMP $1012

TUTOR 1.X >

FIGURE 4-4. Example Program Listing

4-29

4.3.5 Error Conditions and Messages

There are five different conditions that can result in error messages while
using the assembler/disassembler. The response to the error condition can be to
abort the command (and thus the assembler), or to cause the assembler to ask for
a corrected input line. The error conditions are discussed in the following
paragraphs and include bus and address trap errors, improper characters, numbers
which are too large, and assembly errors.

4.3.5.1 Trap Errors. Two types of trap errors can be caused. One form, the
bus trap error, may be encountered if a location is accessed at which there is
no memory. Included in this error type are write cycles to ROM. The second
form is an address trap error. Instructions must always begin on an even
address; if not, an address trap error will result. Figure 4-5 shows examples
of these conditions.

TUTOR 1.X > MM EOOOC;DI

4CD5 00OOEO0QOO0 4CD4
BUS TRAP ERROR

PC=009192 SR=2704=.S7..Z.. US=EFAD7EBF S5=000007B4 No memory
D0=0000E044 D1=01964D4D D2=FFF24D4D D3=00000000 at address
D4=0000B432 D5=00000000 D6=00000000 D7=00000FFD SE000

A0=000080C2 A1=00008344 A2=00000454 A3=0000054E
A4=0000E000 A5=0000053A A6=0000053A A7=000007B4

009192 27AC1CFCO03F MOVE.L 7420(a4),63(A3,D0.W)
TUTOR 1.X > MM A000;DI
00A000 6502 BCS.S $SA004 ? BEQ.S $A000
1285 0000A000 1280
BUS TRAP ERROR ROM at address
PC=0091EE SR=2700=.S7..Z.. US=EFAD7EBF SS=000007B4 $A000; cannot
D0=67FE0067 D1=00000001 D2=650202FF D3=00000000 be written to

D4=FFFFFFFE D5=FFFFFFFE D6=00000002 D7=00000000

A0=000007F5 Al=0000A000 A2=000007B1 A3=00000817

A4=0000A000 A5=0000081A A6=0000081A A7=000007B4

0091EE B400 CMP.B DO,D2
TUTOR 1.X > MM 3001;DI

4CD5 00003001 4CD4

ADDR TRAP ERROR Instructions
PC=009192 SR=2704=.S7..Z.. US=EFAD7EBF SS=000007B4 must begin at
D0=00003044 D1=01964D4D D2=FFF24D4D D3=00000000 an even address

D4=FFFFB432 D5=00000000 D6=00000000 D7=00000FFD
A0=000080C2 Al=00008344 A2=00000454 A3=0000054E
A4=00003000 A5=0000053A A6=0000053A A7=000007B4
009192 27AC1CFCO03F MOVE.L 7420(A4),63(A3,D0.W)

FIGURE 4-5. Examples of Trap Errors

4-30

Also note that BUS and ADDRESS trap errors also cause display of the exception
status from the stack, in hexadecimal characters:

XXXX AAAAAAAA TIIII

where:
XXX Are miscellaneous status bits:
0-2 Function code
3 Instruction/Not (0 = instruction, 1 = not)
4 Read/Mrite (0 = read, 1 = write)

5-15 Not defined
AAAAAAAA Is access address.

II1I Is instruction register (first word of instruction being
processed) .

For details on this display, refer to the bus error and address error
descriptions in the MC68000 User's Manual, MC68000UM.

4,3.5.2 Improper Character. If a character appears in the operand field that
does not belong to the class of characters specified or expected, an "X" will be
printed beneath the character string suspected of containing the improper
character, followed by a "?" to prompt re-entry of the line., For example, if a
% (percent sign) is used to specify the binary class of characters, only the
digits 0 and 1 will be accepted.

TUTOR 1.X > MM 6000;DI S is not a decimal digit
006000 FFFF DC.W SFFFF ? MOVE.W #S5',D0
006000 MWWE.W #S',D0

X?
TUTOR 1.X > MM 6000;DI 9 is not an octal digit
006000 FFFF DC.W SFFFF ? ADDA.L #@974,A6
006000 ADDA.L #@974,A6

X?
TUTOR 1.X > MM 6000;DI P is not a decimal digit
006000 FFFF DC.W SFFFF ? JMP $4000+PC
006000 JMP $4000+PC

X?

FIGURE 4-6. Examples of Improper Characters

4-31

4.,3.5.3 Number Too Large. Another error type involves numbers which are too
large for the MC68000 to handle. Again, an "X" is printed under the number
suspected of containing the error, followed by a "?". Figure 4-7 gives an
example.

TUTOR 1.X > MM 4000;DI value is larger than 32 bits
004000 FFFF DC.W SFFFF ? LEA.L $937402110,A7
004000 LEA,.L $937402110,A7

X?

FIGURE 4-7. Example of a number which is too large

4,3.5.4 Assembly Errors. An assembly error can occur due to an invalid op
code, an illegal addressing mode for a particular instruction, the format may be
in error (leading space omitted as an example), or the source line incorrect in
some other way. When the entry as written is not a valid MC68000 instruction,
the assembler echoes the source line up to and including the field in which the
error probably occurred. It also prints an "X" under the field suspected of
containing an error, followed by a "?" to prompt re—~entry of the line.

The entire line must be re-entered in its correct form. If the error has not
been corrected or another is encountered, the error indicator will be returned.
After all errors have been corrected and the source line represents a valid
MC68000 instruction, the line will be assembled. The memory address, machine
code, and source code will be displayed and the next line will be disassembled.
A period (.) is used to exit the command. Examples of typical errors are shown
in Figure 4-8.

4-32

Example 1

006700

006700

Example 2

001100

001100

Example 3

005300

005300

Example 4

007200

007200
Example 5

001500

001500

Examples 6

004900

004900

004800

004800

Invalid Op Code

FFFF DC.W SFFFF ? BEQU.S $6754
BEQU.S
X? BEQ.S $6754
6752 BEQ.S $6754
Missing Leading Space
FFFF DC.W SFFFF ?0R.B D5, (A6)
X? OR.B D5,(A6)
8Bl6 OR.B D5, (A6)
Unrecognizable Op Code
FFFF DC.W SFFFF ? MULSW 52,D3
MULSW
X? MULS.W 52,D3
C7F80034 MULS.W 52,D3
Invalid Size Extension
FFFF DC.W SFFFF ? MOVEQ.B #2,D1
MOVEQ.B #2,D1
X? MOVEQ.L #2,Dl1
7202 MOVEQ.L #2,D1
Invalid Addressing Mode
FFFF DC.W SFFFF ? ADDQ.B #7,A0
ADDQ.B #7,A0
X? ADDQ.B #7, (A0)
5El10 ADDQ.B #7,(A0)
and 7 Branch Address Too Large
FFFF DC.W SFFFF ? BRA $10000
BRA $10000
X? BRA $8000
600036FE BRA $8000
FFFF DC.W SFFFF ? BRA.S $7000
BRA.S $7000
X? BRA.S $4902
BRA.S $4902
X? BRA.S $4860
605E BRA.S $4860
FIGURE 4-8, Examples of Assembly Errors

4-33

4.4 TESTING/EXECUTING PROGRAMS

After program entry, the next step is to execute and debug the program. With
the facilities provided by TUTOR, the user can run the program with trace
capabilities. The following paragraphs describe techniques to help this process
and, as before, the example program is used to illustrate.

4.4.1 System Initialization

The first step in running and testing a program is initialization of the
processor registers and any peripheral devices, as required. For simple
programs involving only the processor, this initialization concerns only the
MC68000 registers:

a. Bit 13 of the status register must be initialized to select either the
user state or the supervisory state for the MC68000. These operating
modes are discussed in the MC68000 User's Manual.

b. The stack pointer(s) (User's Stack Pointer and/or Supervisor Stack
Pointer) must be set to point to a valid RAM address. If a stack pointer
is left pointing to non-existent memory or to ROM, a bus trap error will
occur when the stack is used. Each stack pointer is a 32-bit register,
and both must be initialized if both operational modes will be used.

when writing programs on the MC68000 Educational Computer, the user must
not position either stack pointer within the RAM allocated to TUTOR --
that is, RAM addresses below $900 should not be used. Also, since the
stack grows from high memory to low memory (i.e., the stack pointer value
decreases as information is placed on the stack), enough room should be
left between the initial stack pointer value and $900. The size of the
stack area should be large enough to accommodate the maximum number of
words that will ever be stacked at one time. A final caution is to not
overlap stack areas. NOTE: The Trace command requires a supervisor
stack area of at least six bytes.

c. Address registers (A0-A6) should be initialized as required by the
program.

d. Data registers (D0-D7) should be initialized as required by the program.

e. The program counter (PC) should be set to the beginning address of the
program,

For simple instructional programs, register initialization through the TUTOR
comnands is acceptable. For more comprehensive programs, however,
initialization of the processor and all other resources should be an integral
part of the target program. Programs should be written with the concept that
they will ultimately have to run in a stand-alone manner and they must control
all resources. TUTOR would not be a part of the target program.

4-34

Figure 4-9 shows the initialization procedure for the ASCII to hex digit
conversion routine. The registers are displayed with the DF command to check
their contents. Bit 13 of the status register indicates the supervisory mode is
operational. Because the program can run in either mode, it is not necessary to
change modes. The program counter (PC) is set to $1000, which is the beginning
address of the program. The supervisory stack pointer is set to $0F00 (the
user's stack pointer is not used and thus is not initialized). Finally, $31
(ASCII value for 1) is entered into data register DO. The program expects to
find an ASCII character in the lowest byte of DO.

TUTOR 1.X > DF
PC=00000000 SR=2704=.S7..Z.. US=00002000 SS=000007BC
DO=0000000A D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 Al=00000638 A2=00001000 A3=00000542

A4=00000524 A5=0000053A A6=UUDUUS3A A/=VUUUT/BC

000000 0000 DC.W $0000

TUTOR 1.X > .PC 1000
TUTOR 1.X > .SS OF00
TUTOR 1.X > .DO 31

TUTOR 1.X > DF
PC=00001000 SR=2704=.S7..Z.. US=00002000 SS=00000F00

DO=00000031 D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 Al=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001000 0C000030 CMP.B #48,D0

TUTOR 1.X > BR 1012

BREAKPOINTS
001012 001012

FIGURE 4-9. Initializing Registers and Setting Breakpoint for Example Program

4.4.2 Setting Breakpoints

If there are no errors in the program, processing should proceed to the
termination instruction —— BRA.S $001012 -- at address $1012 (branch always to
self). Register DO should contain value 'l' at that time. Normally, the
processor would continue to loop at this address, but a breakpoint will be
inserted so the program can be halted and the results checked. Figure 4-9 also
shows this breakpoint being entered.

Up to eight breakpoints can be used at one time. With complex programs,
breakpoints and the trace function are valuable debugging tools.

4-35

4.,4.3 Program Execution

The GO (or G) command causes the user program to execute making use of
breakpoints. Execution will stop when a breakpoint is encountered, when
exception processing is caused by an abnormal program sequence, or when the user
intervenes through the ABORT or RESET pushbuttons on the board. The GO command
sequence begins by tracing one instruction, setting any breakpoints, and then
freerunning. The GT and GD commands can also be used to execute a program with
a temporary breakpoint and without breakpoints, respectively.

Figure 4-10 shows execution of the example program (GETHEX). Execution begins
at address $1000 where the program counter was initialized. Execution is halted
at the breakpoint address $1012. At this point, register DO contains the value
'1', which is the expected number. It appears that the conversion program has
performed correctly.

To further test the program, a different ASCII value is entered; DO is set to
$45, which is the representation for 'E' -- a valid hex digit. Upon execution,
the program still goes until the breakpoint at $1012; however, DO now contains
value 'FF', which indicates an invalid character. Therefore, there is an error
in the program, and it must be further debugged.

TUTOR 1.X > G
PHYSICAL ADDRESS=00001000

AT BREAKPOINT

PC=00001012 SR=2700=.S7..... US=00002000 SS=00000F00

D0=00000001 D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 A1=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001012 60FE BRA.S $001012

TUTOR 1.X > .DO 45

TUTOR 1.X > G 1000
PHYSICAL ADDRESS=00001000

AT BREAKPOINT

PC=00001012 SR=2700=.S7..... US=00002000 SS=00000F00

DO=000000FF D1=00000000 D2=00000000 D3=00000000

D4=B0000018 D5=0000003F D6=00000000 D7=00000000

A0=00010040 Al=00000638 A2=00001000 A3=00000542

A4=00000544 A5=0000053A A6=0000053A A7=00000F00

001012 60FE BRA.S $001012

FIGURE 4-10. Execution of Example Program

4-36

4.4.4 Trace Mode

The trace mode is another major tool, other than breakpoints, used in debugging
software. The basic trace command, TR or T, executes instructions, one at a
time, beginning at the location pointed to by the program counter. After
execution of each instruction, the processor registers are displayed. The trace
command can be used to trace a single instruction or to trace multiple
instructions if a <count> number is entered.

As shown in Figure 4-11, the example program will be traced, one instruction at
a time, to discover the error(s) in it. Register DO is again initialized to $45
and the program counter is set at $1000.

TUTOR 1.X > .DO 45 cr
TUTOR 1.X > .PC 1000 cr

TUTOR 1.X > DF cr

PC=00001000 SR=2700=.57..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001000 0C000030 CMP.B #48,D0

TUTOR 1.X > T cr

PHYSICAL ADDRESS=00001000

PC=00001004 SR=2700=.S7..... US=00000F00 SS=00000FC0

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001004 6D1C BLT.S $001022

TUTOR 1.X :> cr

PHYSICAL ADDRESS=00001004

PC=00001006 SR=2700=.57..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al1=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001006 0C000039 CMP.B #57,D0

TUTOR 1.X > cr
PHYSICAL ADDRESS=00001006

PC=0000100A SR=2700=.57..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

DA=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 AS=0000053A A6=00000541 A7=00000F00

00100A 6E08 BGT.S $001014

FIGURE 4-11. Trace Sequence for Example Program (sheet 1 of 2)

4-37

TUTOR 1.X > cr

PHYSICAL ADDRESS=0000100A

PC=00001014 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

24=00001030 A5=0000053A A6=00000541 A7=00000F00

001014 0C000041 CMP.B #65,D0

TUTOR 1.X > cr

PHYSICAL ADDRESS=00001014

PC=00001018 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001018 6D08 BLT.S $001022

TUTOR 1.X > cr

PHYSICAL ADDRESS=00001018

PC=0000101A SR=2700=.57..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

00101A 6E06 BGT.S $001022

TUTOR 1.X :> cr

PHYSICAL ADDRESS=0000101A

PC=00001022 SR=2700=.S7..... US=00000F00 SS=00000F00

D0=00000045 D1=0000C000 D2=FFFFC000 D3=00000000

D4=FFFFFFFF D5=00000000 D6=00000001 D7=00000012

A0=00001000 Al=12345678 A2=00000547 A3=0000C000

A4=00001030 A5=0000053A A6=00000541 A7=00000F00

001022 203CO00000FF MOVE.L #255,D0

FIGURE 4-11. Trace Sequence for Example Program (sheet 2 of 2)

Each time the registers are displayed by the Trace or DF command, a line of
source code is also displayed. The source line displayed is pointed to by the
current program counter value and is the next instruction to be executed. The
first instruction to be executed -— CMP.B #48,D0 —- is pointed to by the initial
pC value and is shown following the first group of registers in Figure 4-11.
Invoking the trace command causes this instruction to be executed. The
resultant register values and the next instruction are then displayed. The PC
has been incremented by four to point at the next instruction ($1004). Since DO
has a value greater than $30, the least significant four bits of the status
register have been cleared as a result of the compare instruction.

4-38

Once the trace mode has been entered, the prompt includes a colon (i.e.,
TUTOR 1.X :>). While in the trace mode, entering the single character carriage
return (CR) will cause one instruction to be traced. In the example, the next
instruction — BLT.S $001022 —-- 1is executed by entering a carriage return
following the prompt. Because the status bits from the previous instruction
indicate that DO is not less than $30, the branch to address $001022 is not
made. Program tracing continues in this manner until an incorrect condition is
found.

After the value in DO is compared to $41 (CMP.B #65,D0), a branch is made to
address $1022 if DO is less than $41 (BLT.S $001022), or the next instruction
(BGT.S $001022) causes a branch to $1022 if DO is greater than $41. Thus, the
only time the branch to the error sequence is not taken is if DO equals $41.
This, then, is incorrect since the sequence excludes hex digits $B through SF.
The second branch should be taken only if DO is greater than $46. A comparison
between Figures 4-1 and 4-3 shows that the instruction CMP.B #$46,D0 has been
omitted from the program as entered.

4.4.5 Inserting and Deleting Source Lines

Lines are added to or removed from source programs with the Block Move (BM)
command. The assembler/disassembler does not support insert line and delete
line commands. Insertions are accomplished by moving a portion of the program
to a higher or lower memory location, thereby leaving a gap between two sections
of the program. The new source lines can be inserted into this gap. A gap can
be closed up or lines can be deleted by moving a section of the program in the
opposite direction,

In Figure 4-12, the missing source line is inserted into the example program.
The last five source lines are moved to a higher memory address, using the Block
Move command. (Refer also to Figure 4-4 in paragraph 4.3 for memory addresses.)
Since the number of bytes required by the additional line(s) is not known, the
gap is made larger than necessary. The additional source line is inserted at
address $101A, using the MEX68KECB assembler. Figure 4-12 shows the source
lines as they look at this stage. The gap is closed up using BM, and a second
source listing is shown.

Notice, however, that several of the branch addresses are now incorrect and
would cause a branch to the wrong instruction., Since absolute addresses rather
than labels are used, all branch and jump addresses must be checked any time any
or all of the lines in a program are moved. If both the branch instruction and
the destination of that instruction are within the same program section (i.e.,
the section that was moved and the section that was not moved), the branch
addresses should be correct because they are assembled using relative addressing
and no extra bytes have been inserted between the instruction and the
destination. I1f, however, source lines have been inserted between the
instruction, and the destination, the branch address will be incorrect. The same
rule also applles to any type of program counter relative addressing, not just
to branch addresses.

Any absolute addresses, including Jjump addresses, will be incorrect if the

destination has been moved to a different address. Otherwise, they should be
correct.

4-39

TUTOR 1.X > BM 101A 102B 1020
PHYSICAL ADDRESS=0000101A 0000102B
PHYSICAL ADDRESS=00001020

TUTOR 1.X > MM 101A;DI

00101A 6E06 BGT.S $001022? CMP.B #346,D0
00101A 0C000046 CMP.B #546,D0

00101E 0007 DC.W $0007 2.

TUTOR 1.X > MD 1000 32;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
00100C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 ~ 6DO08 BLT.S $001022
00101A 0C000046 CMP.B #70,D0
00101E 0007 DC.W $0007
001020 6E06 BGT.S $001028
001022 04000007 SUB.B #7,D0
001026 60EA BRA.S $001012
001028 203CO000000FF MOVE.L #255,D0
00102E 4EF81012 JMP $1012

TUTOR 1.X > BM 1020 1031 101E
PHYSICAL ADDRESS=00001020 00001031
PHYSICAL ADDRESS=0000101E

TUTOR 1.X > MD 1000 30;DI

001000 0C000030 CMP.B #48,D0
001004 6D1C BLT.S $001022
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
001l00C 02800000000F AND.L #15,D0
001012 60FE BRA.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D08 BLT.S $001022
0o10lAa 0C000046 CMP.B #70,D0
00101E 6E06 BGT.S $001026
001020 04000007 SUB.B #7,D0
001024 60EA BRA.S $001010
001026 203CO00000FF MOVE.L #255,D0
0olo02C 4EF81012 JMP $1012

FIGURE 4-12. Inserting Missing Source Line into Example Program

4-40

In all cases, the destination address should not be moved so that it is out of
the range of the address mode being utilized. 1In the example, the instructions
at addresses $1004, $1018, and $1024 must be changed to correct the destination
addresses. Figure 4-13 lists the source program after these changes have been
made. Testing shows that the ASCII to hex conversion program is now correct.

TUTOR 1.X > MD 1000 30;DI

001000 0C000030 CMP.B #48 ,D0
0oloo04 6D20 BLT.S $001026
001006 0C000039 CMP.B #57,D0
00100A 6E08 BGT.S $001014
0olo0C 02800000000F AND.L #15,D0
001012 60FE BT.S $001012
001014 0C000041 CMP.B #65,D0
001018 6D0C BLT.S $001026
00101A 0C000046 CMP.B #70,D0
00101E 6E06 BGT.S $001026
001020 04000007 SUB.B #7,D0
001024 60E6 BT.S $00100C
001026 203C000000FF MOVE.L #255,D0
00102C 4EF81012 JMP $1012

FIGURE 4-13. Corrected Example Program Listing

4-41

4.5 SAVING PROGRAMS

After a program has been created and tested, a permanent copy is desired for
both documentation purposes and to avoid re—entering it the next time it is to
be executed. There are several methods available for saving programs, depending
on the optional hardware that is available. Programs can be saved on tape or
can be uploaded to a host processor via Port 2 of the MEX68KECB. Once a program
has been sent to the host, it can be saved on the host's mass storage media.
Uploading to a host requires a program at the host to input the program
S-records from the RS-232 port and save them either in RAM or directly onto the
mass storage media. Refer to Appendix A for a description of S-records.

4.5.1 Saving Programs on Tape

Whatever the storage media selected, the DUMP (DU) command is used to convert
the program to S-record format and send it to the specified port. For a
detailed description of the DUMP command, see paragraph 3.5.8. The Port 4
option must be selected to dump to tape.

Before programs can be stored, a cable must be constructed to interface the tape
player to the MEX68KECB (paragraph 2.5.3). Hook up the cable and turn the tape
player on. Position the tape in the desired location. It is best to leave a
relatively large gap between programs, as this makes it easier to reposition the
tape before loading a program. The tape can be positioned anywhere within the
gap which precedes the desired program. The tape counter, if one is available,
is useful in quickly positioning the tape in the correct spot.

The beginning and ending addresses of the program must be known because these
parameters are required by the DUMP command. For the example presented in this
chapter, the addresses are:

. Beginning $1000

. Ending $102F

Type in the DUMP command line but do not enter a carriage return yet. The
command for the example program is:

TUTOR 1.X > DU4 1000 102F

Press both the play and record buttons on the tape player. After all the leader
has gone by and the motor is up to speed, enter a carriage return at the
terminal. When the TUTOR 1.X > prompt is again displayed, indicating that the
DUMP command has finished, stop the tape player. After repositioning the tape
to the beginning of the records just saved, the VERIFY (VE) command should be
used to check the tape against the program. Paragraphs 3.5.26 and 4.5.2
describe using the VERIFY command.

4-42

4.5.2 Loading and Verifying Programs from Tape

To prepare for loading a program from tape, position the tape before the
beginning of the desired program. Do not start the tape player yet, or a
portion of the program may be missed by the MEX68KECB. Enter the LOAD command
line shown below, including the carriage return.

TUTOR 1.X > LO4 cr

The MEX68KECB is now looking for information from Port 4. Start the tape player
by depressing the play button only. When the prompt is received, stop the tape
player. The program should now be in RAM and can be examined with the MEMORY
DISPLAY (MD) and MEMORY MODIFY (MM) commands.

The VERIFY command (paragraph 3.5.26) should be used to ensure that the tape has
been properly loaded. The VERIFY command reads the tape but instead of putting
the information into memory, it makes a comparison between the contents of
memory and the records read from tape; the comparison is made after the
S-records have been converted back to hex. The sequence of steps for the VERIFY
directive is very similar to those required for the LOAD — position the tape,
enter the command line including carriage return, start the tape, wait for the
prompt, turn the tape player off. The command line is:

TUTOR 1.X > VE4 cr

I1f the entire program verifies correctly, only the prompt will be returned. If
differences are found between the tape and the RAM, these differences will be
listed. For example, in the program example, verify errors can be forced by
modifying the RAM after the program has been loaded.

TUTOR 1.X > LO4 cr

TUTOR -1.X > MM 1000;W cr
001000 0C00? cr
001002 003072 0123. cr

TUTOR 1.X > VE4 cr
81131000- D 00030- e T e T e T e T e T e T e T e T e T e T e T e T e
ERROR

TUTOR 1.X >

The contents of locations that did not verify are listed as read from tape.
Locations within the same S-record that did verify are represented by dashes.
In the example, locations $1002 and $1003 which were changed with the MEMORY
MODIFY command did not verify, and their correct (original) contents are shown.
After all the errors have been listed, the message ERROR is printed to indicate
that one or more errors have been found.

Verification errors can also be generated by errors on the tape. If the output
level (volume) from the tape player is incorrect, the MEX68KECB may not be able
to read the tape properly. Adjusting the wvolume control, usually about
mid-range, should solve this problem. If different tape players are used, the
volume may need to be readjusted.

4-43

Errors may also result if the particular tape player used does not invert the
information — which makes no difference with audio tapes but which will affect
the MEX68KECB. The MEX68KECB is factory-jumpered to receive inverted data. The
incoming data is inverted by the ECB receiver hardware; however, since the
receiver firmware expects a non-inverted signal, a second inversion must be
provided. The MEX68KECB expects inverted data from the tape player. If the
tape player used does not invert the data, an additional inversion can be done
on the MEX68KECB with a cut and jump option. See Chapter 6 for the details.

If the S-records are put onto the tape by another computer (i.e., not an
MEX6SKECB) , the tape format used may not be compatible with the Educational
Computer. The Educational Computer uses frequency shift keying (FSK) to code
the data. A 'l' is represented by one period of a 50% duty cycle 2000 Hz square
wave. A '0' is represented by one period of a 50% duty cycle 1000 Hz square
wave,

when downloading or verifying files from a remote host to the ECB, it is
possible that data will be lost for various reasons such as losing an
S-record(s) while printing out errors in a previous S-record. To prevent this,
the ECB will send characters to the host to stop and start the transferral of
the S-records. Various hosts require different characters to do this, and some
have no provision for this kind of flow control.

The appropriate start and stop characters should be entered by the user in the
first and second bytes of the options variable. The PF command displays the
address of the 6-byte variable called OPTIONS.

TUTOR 1.X > PF XXXXXX is the absolute address of the
6-byte variable OPTIONS

FORMAT= 15 15

CHAR NULL=00 00

C/R NULL=00 00

OPTIONS@XXXXXX

The first byte is the transfer on (start) character and the second byte is the
transfer off (stop) character. The other four bytes are used by the TM command
and when mechanical terminals are used. Refer to paragraphs 3.5.21 and 3.5.23
and Appendix B for a discussion of these bytes.

Both the start and stop characters are initialized to $00 (NUL) on RESET. The
bytes can be changed to effect data flow control. With an EXORciser or EXORmacs
as host and loading from MDOS or VERSAdos, the flow can be halted with CTRL W
($17) and resumed with any other character (such as a space — $20) .
Alternatively, some time-share systems use the device control characters DCl
($11) and DC3 ($13) as the start and stop characters, respectively.

4.,5.3 Upload to a Host

Uploading to a host is another method of saving programs and it also uses the
DUMP command. A file is usually uploaded through Port 2, 1In order to upload
successfully, the host must contain a program to input S-records from the RS5-232
port and save them. The Educational Computer Board can upload to any host which
has an RS-232 port and the required program. Motorola's EXORmacs and EXORciser
development systems are both suitable hosts.

4-44

4.5.3.1 EXORciser as Host. Before sending S-records to the EXORciser, it must
first be conditioned to receive them. To do this, enter the transparent mode
(TM, paragraph 3.5.23), which allows the terminal to 'talk' directly to the
host/EXORciser. The EXbug LOAD command (refer to the EXORciser User's Guide)
will be used to input the S-records from the educational computer, convert them
to hex, and store them in RAM. After receiving the EXbug prompt, key in the
LOAD directive and select the S option, which loads a single file.

When connected to an EXORciser I, it is necessary to type an "X" following the
TM command in order for the EXORciser to respond. For EXORciser II, it should
be Control X, as follows:

EXORciser I EXORciser II

TUTOR 1.X> ™ cr TUTOR 1.X> ™ cr

TRANSPARENT EXIT=$01=CTL A *TRANSPARENT* EXIT=$01=CTL A

X XC (CTRL X)

EXBUG 1.X LOAD EXBUG 2.X

SGL/CONT S E* LOAD cr

AC (CTRL A) s/C s

TUTOR 1.X> DU2 3000 302F cr AC (CTRL A)

PHYSICAL ADDRESS 00003000 0000302F TUTOR 1.X> DU2 3000 302F cr

TUTOR 1.X> PHYSICAL ADDRESS 00003000 0000302F
TUTOR 1.X>

The EXORciser is ready to accept the S-records. Exit the transparent mode by
entering the exit character —— usually CTRL A. The command line to upload is
very similar to the command for dumping to tape. The required parameters are
again the beginning and ending addresses and the port option is Port 2.

When the prompt is returned, the entire file has been uploaded. The next step
is to transfer the file to disk. Re-enter the transparent mode; several
carriage returns may be required before the EXbug prompt is received.

TUTOR 1.X > TM cr TUTOR 1.X > T™ cr
cr cr cr CTRL X
EXbug X.X EXBUG 2.X

When the prompt is received, boot MDOS and use the MDOS utility ROLLOUT to
create the disk file.

Several types of problems may be encountered in the sequence Jjust described.
The EXORciser must contain enough RAM addressed at the same location as the
program being transferred., 1If this is not the case, the program can be moved to
a different address within the MEX68KECB, using the BLOCK MOVE (BM), paragraph
3.5.2, before it is uploaded. Also be aware that ROLLOUT cannot roll out memory
which is overlaid by either MDOS or the ROLLOUT command itself. These software
programs occupy address space $0-$3000. Refer to the ROLLOUT command
description in the EXORdisk II/III system user's guide.

4-45

A second potential problem involves the formatting of Port 2. The EXORciser
processes each S-record after it is read before reading the next record. This
requires the MEX68KECB to break between each S-record to allow time for
processing by the EXORciser. This is effectively accomplished by inserting a
string of nulls after each S-record, Do this with the format Port 2 command.

TUTOR 1.X > PF2 cr

FORMAT= 152 cr

CHAR NULL=XX ? cr

C/R NULL=XX ? 10 cr (16 nulls after each line)
TUTOR 1.X >

The number of nulls required varies with the baud rate but should never be
greater than $10 (i.e., 16).

4.5.3.2 EXORmacs as Host. Transferring files to an EXORmacs is accomplished in
a slightly different manner than transferral to an EXORciser. Using the
VERSAdos utility UPLOADS, the file can be transferred directly to disk,
bypassing the intermediate step. In order to use the UPLOADS utility, Port 2 of
the Educational Computer must be connected to the MCCM in the EXORmacs.

Before attempting to transfer a file, enter the transparent mode and bring up
VERSAdos. Call up the UPLOADS utility, giving the file name. Return to TUTOR.
Now dump the file to Port 2 in the same way as before.

TUTOR 1.X > DU2 1000 102F cr
TUTOR 1.X >

A disk file has been created. Re—enter the transparent mode to communicate with
UPLOADS for any error messages.

4-46

4.5.4 Download from a Host

Files are retrieved from the host and checked for load errors with the LOAD and
VERIFY commands. The files must be in S-record format. Besides retrieval of
programs created using the MEX68KECB assembler/disassembler, the LOAD command is
a handy tool for loading MC68000 language programs created using the host's
resident or cross assembler. Such assemblers currently exist for the EXORmacs,
EXORciser, and other potential hosts.

4,5.4.1 EXORciser as Host. The download sequence from an EXORciser is slightly
different, depending on whether the files were originally uploaded or were
created within the host. The file to be downloaded must be in S-record format.
The ROLLOUT command does not create such a file. 1In this case, the file can be
easily converted to S-record format, using the MDOS utility BINEX.

Once an S-record format is available, the download procedure is the same. MDOS
should be loaded under the transparent mode and then control should be returned
to TUTOR. LOAD and VERIFY can now be used as described in the section on
loading and verifying from tape. The Port 2 option should be selected and a
directive must be sent to the EXORciser via the RS-232 port. Any MDOS directive
which sends the S-record formatted file to the RS-232 port can be used.

TUTOR 1.X > LO2 ;=COPY GETHEX.LX,#CN cr
TUTOR 1.X >

or

TUTOR 1.X > LO2 ;=LIST GETHEX.LX cr
TUTOR 1.X >

Care must be taken to assure that any files created at the host are addressed
within the user RAM area on the MEX68KECB. Also be aware that when disk files
are created, entire sectors are allocated; any extra locations are filled with
zeros. Therefore, the file may be slightly longer than the original program.

4.5.4.2 EXORmacs as Host. The download sequence from the EXORmacs is virtually
the same as from an EXORciser. After booting VERSAdos in the transparent mode,
return to TUTOR. Use the LOAD and VERIFY commands with the VERSAdos directive
given in the ASCII string following the LOAD or VERIFY command as before. In
this case, however, the S-record files are usually designated by the suffix MX

rather than LX.

TUTOR 1.X > LO2 ;=LIST GETHEX.MX cr
TUTOR 1.X >

The same cautions apply with regard to program addresses and disk files.

4-47/4-48

