Motorola

3.6 COMMAND SUMMARY AND MESSAGES

TABLE 3-2. TUTOR Commands and Options

COMMAND DESCRIPTION
BF <addressl> <address2> <word> Block of Memory Fill
BM <addressl> <address2> <address3> Block of Memory Move
BR [<address>{;<count>]] Breakpoint Set

BS <addressl> <address2> <data> [<mask>] [;<option>]

Block of Memory Search;
options B, W, L

BT <addressl> <address2> Block of Memory Test
DC <expression> Data Conversion
DF Display Formatted Registers

DU{<port number>] <addressl> <address2> [<text..>]
Dump Memory (S-records)

GD [<address>] Go Direct

GO [<Kaddress>] Go

GT <breakpoint address> Go Until Breakpoint

HE Help

LO(<port number>} [;<opticns>] [=text] Load (S—records); options X, -C

MD([<port number>] <addressl> [<count>] [;<option>]
Memory Display; option DI

MM <address> [;<options>] Memgry Modify;
options W, L, 0, V, N, DI
MS <address> <data...> Memory Set
NOBR (<address> <address>....] Breakpoint Remove
NOPA Reset Printer Attach
OF Display Offsets
pA Printer Attach
PF{<port number>] Port Format
Rx Individual Register Display/Change
3-41

Apendix D -1

TABLE 3-2. TUTOR Commands and Options (cont'd)

COMMAND DESCRIPTION
T™ [<exit character>} Transparent Mode
TR [<count>] Trace
TT <breakpoint address> Temporary Breakpoint Trace
VE[<port number>] [=text] Verify (S-records)
* text.... Send Message to Port 2 (1)
.A0 - .A7 [<expression>] Display/Set Address Register (2)
.D0 - .D7 [<expression>] Display/Set Data Register (2)
.R0 - .R6 [<expression>] Display/Set Relative Offset Register (2)
.PC [<expression>] Display/Set Program Counter (2)
.SR [<expression>] Display/Set Status Register (2)
.SS [<expression>] Display/Set Supervisor Stack Pointer (2
.Us [<expression>] Display/Set User Stack Pointer (2)
(BREAK) Abort command
(DEL) Delete character .
(CTRL D) Redisplay line
(CTRL H) Delete character
(CTRL W) Suspend output (3)
(CTRL X) Cancel command line
(CR) Process command line

(1) See writeup of T™ command.
(2) See writeup of .Rx command.
3

) When CTRL W is used, the output display can be continued by
entering any character.

3-42

Motorola Apendix D -2

TABLE 3-3.

Error Messages and Other Messages

ERROR MESSAGE

MEANING

PRINTER NOT READY

SYNTAX ERROR

ERROR

ILLEGAL INSTRUCTION
ADDR TRAP ERROR
BUS TRAP ERROR

IS NOT A HEX DIGIT

DATA DID NOT STORE

INVALID ADDRESS=

WHAT

NOT HEX=

FATLED AT.. WROTE=.. READ=..
UNDEFINED TRAP 14

CHKSUM=

OTHER MESSAGE
TUTCR 1.X >

TIMEQUT

FORMAT=
CHAR NULL~

C/R NULL~

Printer is not properly connected or cannot
receive output

Error in command line
Error

Instruction used an illegal op—code during
program execution

See Traps in MC68000 User's Manual and
paragraph 4.3.5.1.

Improper character entered in a field that
requires a hexadecimal digit

Data did not go where intended

Too big (1 in bits 24-31) or odd for
Wor .L (1 in bit 0)

Program does not recognize uUser's entry
Same as IS NOT A HEX DIGIT

Read or write command failure output by BT
Trap function code is not defined

Indicates received checksum is incorrect,
correct checksum is given

MEANTNG
TUTOR prompt

Displayed if port 2 does not respond to
LO or VE within 10 seconds

Displayed by PF command
Displayed by PF command

Displayed by PF command

Apendix D -3
3-43

Motorola

TABLE 3-3. Error Messages and Other Messages (cont'd)

ERROR MESSAGE

MEANING

OTHER MESSAGE
OPTIONSEXXXXX
TRANSPARENT EXIT=$S01=CTL A
SOFTWARE ABORT
BREAK
AT BREAKPOINT
BREAKPOINTS
PHYSICAL ADDRESS=

PC within "DEBUGGER"

MEANING
Displayed by PF command
Displayed by TM command
Displayed when abort button is pressed
BREAK key has been used
Indicates program has stopped at breakpoint
Displayed by BR command
Actual address by command

Displayed by trace commands

3-44 Apendix D -4

CHAPTER 5

TRAP 14 HANDLER

An additional function contained within the MC68000 Educational Computer
firmware is a function called the TRAP 14 handler. This function can be called
by the user program to utilize various routines within TUTOR, to call special
routines, and to return control to TUTOR. This chapter describes the TRAP 14
handler and how it is used.

Page
5.1 WHAT IS THE TRAP 14 HANDLER? .eccvecccvsscssseoscsssscosscsassnnns D=3
5.1.1 TypesS Of EXCepPtioNS tuuieeceeseveescscsccecacescscscsscscsessaes 53
5.1.2 MC68000 Exception ProCesSsSiNg ceeescececsccescssssscccssssccsses 5=3
5.1.3 Trap 14 HANAler cueieeecceccecoccocccoscccnscscsssossossssssssees 54
5.2 TRAP 14 CALLING SEQUENCE +.ueeeeecsccossccssccsscescsosscsassnsses H=4
5.3 TRAP 14 FUNCTIONS ccceececeacscconssccoenassscssssssasssssssannasss D=0
5.3.1 Input/Output FUNCLIONS seeeecececscocosscscsscosccscccssccscase 50
5.3.2 Conversion FUNCLIONS .eeveuseeceseccsncsoassvsscasassssscassses H5=9
5.3.3 Buffer Control FUNCLIONS ..iveveceveecennsscscscassscscncsseases 5-10
5.3.4 Transfer Control to TUTOR .eeeececcsescesscssccsscscsnscsacasse DO-12
5.3.5 Inserting Additional FUNCLIONS ..veeesscsccescscescoscnacssnses 5—13

5-1/5-2

CHAPTER 5

TRAP 14 HANDLER

5.1 WHAT IS THE TRAP 14 HANDLER?

The TRAP 14 handler is a function contained within TUTOR that allows system
calls from user programs. The system calls can be used to access selected
functional routines contained within the firmware, including ASCII/hex
conversion, input routines, output routines, etc. The user is then not required
to reproduce these functions in his own program.

5.1.1 Types of Exceptions

Exceptions are inputs to the MC68000 which change the "normal" flow of a
program. They can be generated by either internal or external causes. There
are three basic kinds of exceptions recognized by the MC68000:

a. Exceptions which cause the instruction currently being executed to be
aborted. These consist of reset, bus error, and address error
exceptions,

b. Exceptions which allow the current instruction to be completed before
processing the exception. These are trace, interrupt, 1illegal
instruction, and privilege violation exceptions. 1Illegal instructions
and privilege violations cause the current instruction to be executed as
an NOP instruction.

c. Exceptions which occur as part of the normal processing of instructions.
The TRAP, TRAPV, CHK, DIVS, and DIVU (when dividing by zero) instructions
are included in this group.

5.1.2 MC68000 Exception Processing

Exception processing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register., After the copy is made, the
Supervisor mode (S) bit is asserted, putting the processor into the supervisor
privilege state. Also, the Trace mode (T) bit is negated. For the reset and
interrupt exceptions, the interrupt priority mask is also changed to match the
level of the interrupt causing the exception.

In the second step, the vector number of the exception is determined. For
interrupts other than auto-vectored interrupts, the vector number is obtained by
a processor fetch from an external device, classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the wvector
number. This vector number is then used to generate the address of the
exception vector.

The third step is to save the current processor status, except for the reset
exception. The current program counter value and the saved copy of the status
register are stacked, using the supervisor stack pointer. The program counter
value stacked usually points to the next unexecuted instruction; however, for

5-3

bus error and address error, the value stacked for the program counter is
unpredictable and may be incremented from the address of the instruction which
caused the error. Additional information defining the instruction/operation
causing the error is stacked for the bus error and address error exceptions.

The last step is the same for all exceptions. The new program counter value is
fetched from the exception vector. The processor then resumes instruction
execution. The instruction at the address given in the exception vector is
fetched, and normal instruction decoding and execution are started.

5.1.3 Trap 14 Handler

Traps are instructions which generate exceptions. The TRAP instruction can
generate one of 16 exception vectors. Traps are useful for implementing system
calls from user programs. The TRAP 14 handler within TUTOR serves this purpose.
The TRAP 14 handler permits selected routines from TUTOR to be accessed by the
user's target programs. In addition, it allows the user to append his own
routines to the TRAP 14 handler and redefine the functions provided.

Up to 255 different functions can be accessed via the TRAP 14 handler. When
using the TRAP 14 handler in TUTOR, the number of the desired function is passed
to the TRAP 14 handler in the least significant byte of register D7. The
handler uses this function number to find the address of the selected routine in
a lookup table, and transfers control to that address. Most of the defined
functions return to the user's program upon completion; the exceptions are
function numbers 229 and 228, which return to TUTOR.

Of the 255 available functions, 127 are reserved by Motorola (numbered 128
through 254). It is suggested, therefore, that the user assign numbers 0
through 127 to user routines.

5.2 TRAP 14 CALLING SEQUENCE
The calling sequence is:

MOVE.B #<function number>,D7
TRAP #14

where <function number> is a number from 0 through 254, which represents the
selected function. Calls to functions not defined result in the message
'UNDEFINED TRAP 14'; program control is passed to TUTOR.

The appropriate function number is placed in the least significant byte of
register D7 before executing the TRAP instruction. A summary of the defined
functions and the corresponding function numbers is shown in Table 5-1.

TABLE 5-1. TRAP 14 Function Summary

FUNCTION
FUNCTION NAME FUNCTION DESCRIPTION
255 - Reserved function - end of table indicator.
254 — Reserved funciton - used to link tables.
253 LINKIT Append user table to TRAP 14 table,
252 FIXDADD Append string to buffer.
251 FIXBUF Initialize A5 and A6 to 'BUFFER'.
250 FIXDATA Initialize A6 to 'BUFFER' and append string to buffer.
249 FIXDCRLF Move 'CR', 'LF', string to buffer.
248 OUTCH Output single character to Port 1.
247 INCHE Input single character from Port 1.
246 - Reserved function.
245 - Reserved function.
244 " CHRPRINT Output single character to Port 3.
243 OUTPUT Output étring to Port 1.
242 OUTPUT21 Output string to Port 2.
241 PORTIN1 Input string from Port 1.
240 PORTIN20 Input string from Port 2.
239 TAPEOUT Qutput string to Port 4.
238 TAPEIN Input string from Port 4.
237 PRCRLF Output string to Port 3.
236 HEX2DEC Convert hex value to ASCII encoded decimal.
235 GETHEX Convert ASCII character to hex.
234 PUTHEX Convert 1 hex digit to ASCII.
233 PNT2HX Convert 2 hex digits to ASCII.
232 PNT4HX Convert 4 hex digits to ASCII.
231 PNT6HX Convert 6 hex digits to ASCII.
230 PNT8HX Convert 8 hex digits to ASCII.
229 START Restart TUTOR; perform initialization.
228 TUTOR Go to TUTOR; print prompt.
227 OUT1CR Output string plus 'CR', 'LF' to Port 1.
226 GETNUMA Convert ASCII encoded hex to hex.
225 GETNUMD Convert ASCII encoded decimal to hex.
224 PORTINLIN Input string from Port 1; no automatic line feed.
223-128 -— Reserved.
127-0 - User-defined functions.

5-5

5.3 TRAP 14 FUNCTIONS
There are five groups of functions defined by the TRAP 14 handler. These are:

a. Input/Output single character or character strings to or from I/O ports.
b. Conversion routines:

Hex to decimal (ASCII format)

Hex to ASCII - 1, 2, 4, 6, or 8 digits
ASCII (one digit) to hex

ASCII formatted hex to hex

ASCIT formatted decimal to hex

c. Buffer control routines.
d. Transfer control to TUTOR with/without performing initialization.

e. Routines to insert additional user functions into TRAP 14 lookup table.

NOTE: The expected convention when using the TRAP 14 handler is independent
user and supervisor stacks.

5.3.1 Input/Output Functions

The Input/Output group of TRAP 14 functions includes routines to move
information from/to the four available I/O ports to/from memory. They are
useful for receiving commands from the terminal and displaying responses at the
console and at the printer. Communication with a host is also possible.

There are five input routines which can be called via the TRAP 14 handler. A
buffer string can be received from Port 1, 2, or 4. Input is not received from
port 3 because this port is typically connected to a printer. Single character
input can also be received from Port 1. The four string input routines --
PORTIN1, PORTININ, PORTIN20, and TAPEIN — receive input from Port 1, Port 1,
port 2, and Port 4, respectively. ASCII coded strings are typically used
although this is not necessary.

The first three routines accept input until the ASCII code for a carriage return
($0D) is received signifying the end of the string. The last routine, TAPEIN,
recognizes a line feed ($0A) as the end of string indicator. Because it is used
exclusively with S-records, TAPEIN expects the first character of each string to
be an ASCII 'S' ($53); characters prior to the 'S' are ignored.

All of the string input routines move characters from the appropriate port to a
buffer pointed to by register A6. Before using a TRAP 14 call, the user must,
in some cases, initialize parameters other than register D7. For the string
input calls, A6 must be initialized to point to the next free location in the
buffer where the characters will be stored. Register A5 must point to the start
address of the buffer. A comparison is made betwen A5 and A6 each time a
character is received, and the buffer size is not allowed to grow larger than
127 bytes (characters).

Upon completion, the routines PORTIN20 and TAPEIN leave A6 pointing to the last
character in the buffer. PORTIN1 and PORTININ leave A6 pointing to the last
character plus one (i.e., the next free location). All incoming bytes are
masked to seven bits by ANDing them with the value $7F. Control characters
(ASCII codes less than $20) are ignored by PORTIN20 and TAPEIN, while PORTINL
and PORTININ ignore nulls ($00).

5-6

Both PORTIN1 and PORTININ will echo the characters back out to Port 1. The only
difference between these two routines is that PORTIN1 will send both a carriage
return and a line feed back to Port 1 upon receipt of only a carriage return.
PORTININ sends only a carriage return, Table 5-2 summarizes the input
functions.

Single character input is available only for Port 1. Using the routine INCHE, a
single character is input from Port 1 and transferred to the lowest byte of
register DO (the remainder of DO is unchanged). No additional parameters are
required for this function other than the function number which is passed to the
TRAP 14 handler in register D7. Upon completion, DO contains the received
character and A0 has the base address of the serial interface device, the
MC6850, associated with Port 1. In addition, register D1 is used by INCHE and
is not restored.

There are seven output routines corresponding to the five input functions with
two additions. Both string and single character output is provided for Port 3;
there are no corresponding input functions. The five string functions are
OUTPUT, OUT1CR, OUTPUT21, PRCRLF, and TAPEOUT corresponding to Ports 1, 1, 2, 3,
and 4, respectively;. Functions which send single character output to Ports 1
and 3 are named OUTCH and CHRPRINT, respectively.

In all of the string output routines, register A5 is used to point to the
beginning of the string, and register A6 points to the byte immediately
following the last byte in the string. The string that is outputted consists of
all the bytes between the address contained in A5 and the one in A6, including
the byte pointed to by A5 but not including the byte to which A6 points. 1In
each case, with one exception, A5 is pointing to the last byte in the output
string plus one when the output function is complete. The exception, PRCRLF,
leaves register A5 unchanged.

Strings are generally collections of ASCII encoded characters. 1In the case of
Port 4 (tape interface), the string are also generally in S-record format.
OUTPUT, OUTICR, and OUTPUT21 will echo the character being sent to their
respective ports to Port 3 (printer) if it is attached (using the PA command).
Any character sent to Port 3, by these functions or by PRCRLF, must be a
printable ASCII character or a carriage return or line feed; all other
characters are replaced by the ASCII code for a period ($2E) before they are
sent to the printer. Printable characters include all ASCII codes between and
including $20 through $7F.

The major difference between OUTPUT and OUTICR is that OUTICR appends a carriage
return and line feed to the end of the string. None of the other output string
functions append the CRLF to the end of the string. OUTICR also destroys the
contents of registers DO and D1 and moves the base address of the Port 1 serial
device into register AO0. Additionally, the contents of register DO are
destroyed by PRCRLF. Refer to Table 5-3 for a summary of parameters required
and registers used by these functions.

Two single character output functions can be called; OUTCH sends a character to
Port 1 echoing it to Port 3 if it is attached, and CHRPRINT sends a character
directly to Port 3. The character is generally ASCII coded and must be put in
the lowest byte of register DO before the output function is called. As with
the string functions, any character sent to Port 3 must be a printable character
or a carriage return or line feed.

OUTCH does not restore the contents of either DO or Dl. It initializes A0 to
the base address of the Port 1 serial I/0 device.

5-7

i (-1})

S —_ _— — atbuis € e LNIHdHHD
ssaippe aseq T# VIDV-0Y ey
pakoaisep 1a ‘04 - -— — atburs T 8vZ HOLNO
-— T + pud *Jng 3ae3s “Jng T + pug *3jng Butiag 14 6€¢C LN03AdYL
pakoiasap (d 3Je3g *Jng 31e3g “3ng 1 + pug *3ng Butaas € Lee JTHOud
-— T + puld *Jng 3ae3s °jng T + pug °Jng Burag 4 (444 T21n4Ln0
sseappe aseq T§# YIOV-OV
pakoiysep 1 ‘0d T+ puw °“jng 3ae3g *Jng T+ pw *yng butaas T Lze HOTLNO
-_— T + puw °Jng 3aelg *3yng T+ pw™d *Jng butias T £ve LNdLN0
SHALSIOHEY ¥AHIO TUNIJ TYILINI INTVA TYILINI ddAL HIGWNN HIGWNN IWYN
Q¥ YALSIOA 9Y HALSIOAM LNdLNo J0d NOIJONNA NOILONNA
suorzoung 3IndIng *€-G FIEVL
pakoizsep 1d
SsoIppe aseq T# VIOV = OV s aey)
+1eyo andut = 0d — - — — a1burg 1 LyT FHONI
— 32035 193Ing pug °jng *d07 9914 IXN ¥0$ = 41 butias v 8T NIZdvL
_— 31e35 1933nd pug °Ing *D07 2214 IXN aos = ¥o Butaig 14 (1) 74 0ZNIL¥Od
— 3Iels 1sjyng T+ pug *3ng *00] 8914 XN aos = ¥o buriag T 44 NTNIILHOd
-_— 331e38 I1933Ing T + pug *jng D07 99213 IXaN aos = ¥ butiag T 18774 TNIINOJ
ANTYA TYNIJ ANTYA TVILINI TYNId TYILINI HALOVIVHO AdAL HIGWNN HIGWNN AWYN
SHALS1O8Y HIHIO G¥ H3ISION 9V HALSTOM NOTIWNTWHAL JNdILNO I¥0d NOIJIONNA NOIJONNJ

suorjoung Indul *Z-G I79vL

5.3.2 Conversion Functions
The conversion functions can be divided into two groups:

. Hex conversion routines which convert hexadecimal numbers to ASCII encoded
decimal or ASCII encoded hex.

. ASCII conversion routines which convert ASCII encoded numbers to either
decimal or hexadecimal.

Both groups are needed to interface with the various peripherals connected to
the I/0 ports. Most require all characters to be ASCII encoded.

There are five different routines to convert hex numbers to ASCII encoded hex
digits, which are then transferred to a buffer. One, two, four, six, or eight
hex digits can be converted to ASCII, depending on which of the five hex to
ASCII conversion functions — PUTHEX, PNT2HX, PNT4HX, PNT6HX, PNT8HX —— is used.
Register A6 must point to the buffer where the character(s) will be stored. A6
is incremented by 1, 2, 4, 6, or 8, depending on the number of digits converted.

The hex number to be converted is passed to the conversion routine in register
DO (right-justified using four bits per digit); anywhere from four to 32 bits of
DO may be required, depending on the number of digits to be converted.

8 digits

i

6 digits

[4

4 digits

'

2 digits
i

v

l 1 digit
S —

+

D31l | o p23fp | | [D151 | | ol o7 1 | I I Do

Register DO

Each digit requires four bits; up to eight digits can be represented. The most
significant digit is converted and placed in the buffer first, followed by the
other digits in descending order. All five routines destroy the contents of
register DO. The contents of registers Dl and D2 may or may not be destroyed,
depending on the function (see Table 5-4 for more details).

HEX2DEC converts the 8-digit hex number found in register DO to the equivalent
decimal number. This decimal number is converted to ASCII-encoded digits and
placed in the buffer. All leading zeros are suppressed when the number 1is
transferred to the buffer. The final value of register A6 (the buffer pointer)
is therefore unpredictable; its value depends on the number of non-zero digits
in the number. Specific information on this function is shown in Table 5-4.

The six conversion functions discussed thus far convert hex numbers to ASCII.
The last three conversion functions are used to convert ASCII characters to hex
or decimal digits. GETNUMA and GETNUMD take ASCII encoded numbers from a buffer
pointed to by register A5 and convert them to hex and decimal digits,
respectively. If the number of digits is too large to be represented in 32 bits
or if an inappropriate digit is received (i.e., a digit which is too large for
the base or is not a digit at all), the conversion will be aborted and an error
message displayed at the terminal. Otherwise, the conversion will continue
until all digits in the buffer have been processed. Register A6 should point
one byte past the last digit to indicate the end of the buffer. The resultant
value is returned in register DO; all 32 bits are used. A5 is left pointing one
byte past the last digit.

5-9

TABLE 5~-4. Hex Conversion Routines

NUMBER OF PORTION OF DO REGISTERS USED
FUNCTION FUNCTION HEX DIGITS USED FOR FINAL VALUE AND NOT
NAME NUMBER CONVERTED DIGIT(S) OF A6 RESTORED
PUTHEX 234 one bits 3-0 A6 init + 1 DO
PNT2HX 233 two bits 7-0 A6 init + 2 DO,D2
PNT4HX 232 four bits 15-0 A6 init + 4 DO,D1,D2
PNT6HX 231 six bits 23-0 A6 init + 6 D0,D1,D2
PNT8HX 230 eight bits 31-0 A6 init + 8 D0,D1,D2
HEX2DEC 236 eight bits 31-0 * DO
* unpredictable —— deperds on original hex value

The final conversion function, GETHEX, converts the ASCII character in the
lowest byte of register DO to hex and returns the hex number in the same byte.
If the ASCII code does not represent a valid hex digit, an error message is
generated. The ASCII conversion routines are summarized in Table 5~5; all
registers not included in the table are unchanged.

5.3.3 Buffer Control Functions

The buffer control functions are useful in conjunction with the various input
and output functions which are available. The control functions are used
primarily to initialize buffer pointers and to move ASCII strings into an output
buffer.

FIXBUF initializes registers A5 and A6 to point to 'BUFFER'. This is a buffer
within the system RAM and is used by TUTOR. No other registers are altered and
no parameters are required. FIXBUF can be used to initialize A5 and A6 prior to
calling the string input functions, Usage of this buffer while tracing or with
breakpoints will produce erroneous results.

FIXDADD, FIXDATA, and FIXDCRLF are all used to transfer an ASCII string to a
buffer and are summarized in Table 5-6; all registers not included in the table
are unchanged. The first two, FIXDADD and FIXDATA, move a string pointed to by
register A5 into the buffer. FIXDADD requires that register A6 point to the
buffer, while FIXDATA always moves the string to the location in system RAM
called 'BUFFER'. The ASCII end of transmission character (EOT = $04) is used to
indicate the end of the string. It must be the last character in the string,
but is not moved to the buffer. Registers A5 and A6 are left pointing to
'BUFFER' and the buffer end + 1, respectively.

FIXDCRLF is quite similar to FIXDATA -- a string pointed to by register A5 is
moved to 'BUFFER'. The difference is that FIXDCRLF transfers the ASCII code for
a carriage return and line feed to the beginning of the buffer before
transferring the string. The termination character ($04) and parameters
returned are the same.

5-10

T + pus 1333nd - 9V

eaep butaow
8103Jeq ,Yiddnd, O3 9Y S9ZTTeIITUT
{burias jo pus sa1JTIubls p0%

JMd34nd, - SV 31e3s butils - GV {,4a44ang, o3 butias ‘g7 ‘¥D aAOW 374 JdTIOAXId
JAd3dnd, - 6V SUON 4344ng, 03 9V pue GV SezITerarul 162 Angx14
1 + pus 19jjngd - 9V eaep butaouw ai10Jeq NAJINd, O3 OV
N3dang, - G¥ 31e3s PUTIlS - GV S9ZITPTITUT INg AQVAXId Se aueg 062 VIVaXId
1933ng ut
T + pus 193Ing - 9V uoT3ed0T IXAN - 9V Buriys jo pus satjrubls 04
JM3dang, - oY 3J1e3s butils - g¥ {1933nq 03 butils e puaddy AY4 aavaxid
AINENLTY aIIINOTA NOILATHOSHd NOILONNA HIFGWNN qWYN
SHALIWTHY] SYALIWHYI NOIIONNI NOIIONNI
suotrloung 10OI3UCD 1dIING *9-G FIGVL
s11q ¥ S31q9 8
anTea xay ieyo IIOSY — i —_— _— qee XYHLIO
S31q Z¢
anTea xay —— — T + pus 1933ng T + pus 183Ing 3iels 1dIIng GzZe ANNNLED
S31q €
antea xay — — T + pud 193Inq T + pus i193Ing 3iels 1833inq 9Z¢ VWNNLIO
TUNIJ TYILINI TUNIJ TYILINI TUNIJ TYILINI YIFGWNN TWNIN
040 YAISIONY OV YAISIOR GV HILSIOM NOIIONNA NOIIONNI

sSoUTINOY UOTSISAUOD IIDSY °*6-G dA71dvl

5-11

5.3.4 Transfer Control to TUTOR

Using TRAP 14, control can be transferred from a target program to TUTOR in two
ways. One path uses the TRAP 14 function START. After control is passed to
TUTOR, the restart initialization procedure is executed. The stack pointer,
register A7, is initialized to 'SYSSTACK'. The exception vectors, located in
the lower portion of the system RAM, are initialized. A portion of the upper
system RAM is zeroed. The status register is set to $2700 — interrupt mask
level 7 and supervisor state, The prompt is then sent to Port 1.

Using the TRAP 14 function TUTOR, the other path performs only a portion of the

initialization described above. The stack pointer and status register are
initialized and the prompt is displayed. See Table 5-7.

TABLE 5-7. Transfer Control to TUTOR

FUNCTION FUNCTION

NAME NUMBER DESCRIPTION REGISTERS AFFECTED
START 229 Restart TUTOR Status Register=$2700

Perform Initialization A7='SYSSTACK', Program Counter=0
TUTOR 228 Go to TUTOR Status Register=$2700

Print Prompt A7="SYSSTACK'

NOTE: Calling START or TUTOR from the user state will result in a privilege
violation because they write to the status register.

5-12

5.3.5 1Inserting Additional Functions

User-defined functions can also be called using the TRAP 14 handler. The
TRAP 14 handler uses the function number and a lookup table to determine the
address of the selected function. User functions are included by inserting
additional lookup tables. The format for entries in these tables is SUUSSSSSS,
where UU is the function number in hex -- $0 through $7F for user-defined
functions — and SSSSSS is the starting address of the function in hex. Each
entry in the table requires one long word (32 bits).

The table is inserted quite simply; the TRAP 14 function LINKIT, function number
253, performs the insertion. Register A0 must point to the lookup table to be
inserted when the TRAP instruction is executed. The new table is, in effect,
placed in front of the old lookup table., However, since the new table is not
addressed immediately in front of the old table (i.e., old table is in ROM and
new table is in RAM), a link must be provided in the new table to connect it
with the old table. This is accomplished by making the starting address of the
old table preceded by S$FE the last entry in the new table. The format is
$FETTTTTT, where TTTTTT is the pointer to the old table. This is easily
accomplished because LINKIT returns the required long word (SFETTTTTT) in
register A0. The target program should store this value at the end of the new
lookup table immediately after executing the TRAP 14 instruction. The following
is an example of the procedure used to link a user-defined table. Location
NEWTBL is the beginning of the user table and location ENDTBL is the end of the
user table. After executing the TRAP instruction, the pointer to the old table
must be saved at the end of the new table.

NOTE: Labels NEWIBL and ENDTBL are used here for clarity but will not, of
course, be accepted by the interactive assembler.

LEA NEWTBL ,A0 Register A0 points to new table

MOVE.B $#253,D7 LINKIT

TRAP #14

MOVE.L A0, ENDTBL A0 contains SFETTTTTT

. where TTTTTT points to old table

NEWTBL DC.W $uuUss

DC.W $5SSS

DC.W $uuss

DC.W $SSSS
ENDTBL DC.W SXXXX Link to old table will be stored here

DC.W SXXXX

LINKIT is summarized in Table 5-8. Additional tables can be inserted in the
same way.

5-13

Each user—-defined function requires a user-written software routine located
somewhere within the user RAM. These routines should use an RTS (return from
subroutine) instruction, not an RTE (return from exception) instruction, to
return to the calling program. The TRAP 14 handler jumps to the user software
routine, leaving only the program counter on the stack. The RTE instruction
expects both the status register and the program counter to be on the stack.
NOTE: The user must make sure that the stack pointers are pointing to locations
within the user RAM and that the two stacks do not overlap before executing a
TRAP 14 instruction.

TABLE 5-8. Inserting Additional Functions

FUNCTION FUNCTION REQUIRED REGISTERS
NAME NUMBER DESCRIPTION PARAMETERS AFFECTED
_— 255 Reserved -~ End of Table Indicator — _—
SFRXXXXXXX ~ must be last entry in last table
— 254 Reserved - Use to link one table to another —_— _—
LINKIT 253 Insert User Table AQ - start add DO - destroyed
of table to AQ - start add
be inserted of old table

Because function numbers are compared with entries in the user table(s) first,
it is possible to redefine function numbers which have been defined by TUTOR
(i.e., 128 through 253; function numbers 254 and 255 cannot be redefined). For
example, if a user does not have a host system and has nothing else tied to Port
2, that user may not require the Port 2 I/0 functions numbered 242 and 240. The
user can redefine the functions associated with these numbers by placing the
appropriate function number and the address of the new routine ($UUSSSSSS) in
the user function table. The user table will be searched first and the entry in
the other table will be ignored.

Function number 255 is described as a reserved function in Table 5~1. Although
this function is not called by target programs, it nevertheless performs a
useful function as an end-of-table indicator. All 255 available function
numbers may not be assigned to a function and, therefore, will not be included
in the lookup table(s). Thus, it is possible to attempt to call a nonexistent
function by using an unassigned function number. In such a situation, a match
will not be found in the table(s). Whatever follows the table(s) in memory —
program, data, random bytes -- will automatically be used to extend the table in
an attempt to find a match. A bus or address trap error is the usual end point
of this sequence, although significant damage may occur prior to the trap error.

To avoid these problems, the end-of-table function number should always be the
last entry in the last lookup table. Usually this is the table provided by
TUTOR. An address is not required for the end-of-table entry; only the function
number is needed. The format is SFFXXXXXX, where the X's represent 'don't care'
characters. This entry is included as the last long word of the TRAP 14 lookup
table provided by TUTOR. When the end-of-table entry is reached, the message
'UNDEFINED TRAP 14' is sent to Port 1 and control is transferred to TUTOR.

5-14

