
Experiment No. 2

TUTOR COMMAND UTILIZATION and

PROGRAM EXPERIMENTATION

ECE 441

Peter Chinetti

September 12, 2013

Date Performed: September 5, 2013
Partners: Zelin Wu
Instructor: Professor Saniie

1 Introduction

1.1 Purpose

The purpose of this experiment is to familiarize students with the TUTOR mon-
itor software. It also aims to familiarize the student about the M68K instruction
set.

1.2 Background

One of the best methods for learning the MC68000 Instruction Set is to write
an assembly language program, enter it into the development system, execute
it and debug it. In this experiment, the user will be introduced to various
MC68000 instructions and addressing modes. The user will enter the code into
the SANPER-1 ELU through the use of the TUTOR Commands.

2 Lab Procedure and Equipment List

2.1 Equipment

• SANPER System

• Computer with TUTOR software

1

2.2 Procedure

Execute each sample program and record data when requested.

3 Results, Analysis and Discussion

3.1 Sample Program 2.1

3.1.1 Original Source

ORG $300C
START: ; f i r s t i n s t r u c t i o n o f program

∗ Put program code here
MOVE.W D0 , (A0)+ ; Write word from D0 out to pos t incremented A0
CMP.W A0 , A1 ; Check i f we are at our boundry
BLT $300C ; I f we haven ’ t h i t the boundry , branch back to the MOVE
MOVE.B #228,D7 ; Return to TUTOR
TRAP #14

END START ; l a s t l i n e o f source

3.1.2 Modified Source

ORG $300C
START: ; f i r s t i n s t r u c t i o n o f program

∗ Put program code here
MOVE.W D0,−(A0) ; Write word from D0 out to predecremented A0
CMP.W A0 , A1 ; Check i f we are at our boundry
BLT $300C ; I f we haven ’ t h i t the boundry , branch back to the MOVE
MOVE.B #228,D7 ; Return to TUTOR
TRAP #14

END START ; l a s t l i n e o f source

3.1.3 Discussion of Registers

A0 holds the address of the word to be compared, A1 holds the word to compare
against, D7 holds the function we are trapping to.

3.1.4 Predecrement vs Postincrement

They are almost identical, except the limits of the loop might need to be ad-
justed.

2

3.2 Sample Program 2.2

3.2.1 Original Source

ORG $900
START: ; f i r s t i n s t r u c t i o n o f program

MOVE.B #$41 , D0 ; Character code f o r ‘A’
MOVE.B #248,D7 ; Function code OUTCH
TRAP #14
MOVE. L #$FFFF, D5 ; I n i t i a l i z e a r e g i s t e r to a l a r g e number
DBEQ D5, $910 ; Loop wh i l e decrementing to ac t as a t imer
BRA $900 ; I n f i n t e loop

END START ; l a s t l i n e o f source

3.2.2 Procedure 10

Procedure 10 changed the count down from 0xFFFF to 0x000F, which sped up
printing.

3.2.3 Single Character Print

MOVE.B D1 , D0 ; Copy char to D0, where OUTCH reads from
MOVE.W #248, D7 ; I n i t i a l i z e D7 with OUTCH’ s func t i on number
TRAP #14 ; Trap out to OUTCH

3.2.4 Effect of branching to $904

Nothing, the character will remain initialized.

3.2.5 Effect of $90A and $910

This is a loop that decrements a counter to act as a poor man’s timer.

3.2.6 Effect of $90A and $910

Trap functions allow for code reuse and abstraction from direct hardware drivers.

3.3 Sample Program 2.3

3.3.1 Original Source

ORG $950
START: ; f i r s t i n s t r u c t i o n o f program

MOVE. L #$1000 , A5 ; Load s t a r t i n g address o f s t r i n g b u f f e r
MOVE. L #$1018 , A6 ; Load ending address o f s t r i n g b u f f e r
MOVE.B #227,D7 ; Pr int s t r i n g wi th a l i n e f eed charac t e r

3

TRAP #14
MOVE.B #228,D7 ; Ex i t to TUTOR
TRAP #14

END START ; l a s t l i n e o f source

3.3.2 Implementation without OUT1CR

Without the ability to print an entire string plus a linefeed, the user would have
to manually implement a routine to print each of the characters of the string
until the null byte, then append a line feed.

3.3.3 State of A6 and A6 after execution

According to Chapter 5, page 5-7 of the board manual, “A5 is pointing to the
last byte in the output string plus one when the output function is complete.”

3.4 Sample Program 2.4

3.4.1 Original Source

ORG $1000
START: ; f i r s t i n s t r u c t i o n o f program

MOVE. L #$2000 , A0 ; Load s t a r t i n g address o f s t r i n g 1
MOVE. L #$3000 , A1 ; Load S t a r t i n g address o f s t r i n g 2
MOVEQ. L #−1,D1 ; I n i t a l i z e search r e s u l t to f a i l u r e
MOVEQ. L #0,D0 ; Clear D0
MOVE.B (A0) ,D0 ; Load f i r s t va lue f o r t e s t i n g
CMPM.B (A0)+ ,(A1)+ ; Check each l o c a t i o n o f the s t r i n g

; to see i f i t matches
DBNE D0, $1012 ; Repeat f o r the number o f chars in

; the s t r i n g , break i f not =
BNE. S $101C ; Fai led , jump over the succe s s i n s t r u c t i o n
NOT.B D1 ; Succeed , f l i p the s t aus to 1
MOVE.B D1 , $1100 ; Output succe s s or f a i l u r e
MOVE.B #228,D7 ; Ex i t to TUTOR
TRAP #14

END START ; l a s t l i n e o f source

4

3.4.2 Flowchart

Initialize String Location

Initialize Return Value

Read Size from first byte of string

Compare bytes in two strings

Decrement string counter

Is the string size counter positive

and
Are the bytes equal?

Did the last comparison fail?

Set success return value

Write return value to memory

Return to TUTOR

Yes

No

Yes
No

5

3.4.3 MOVE vs. MOVEQ

MOVEQ can move small values faster than MOVE can, but can not handle as
wide a range of values as MOVE.

3.4.4 CMPM

CMPM allows for condensing multiple operations into one instruction, which
saves on instruction cache usage, named register usage and program size.

3.4.5 Which instruction sets the CC bits for $1018

CMPM two instructions back. Branches do not modify the CC bits.

3.5 Sample Program 2.5

3.5.1 Original Source

ORG $2000
START: ; f i r s t i n s t r u c t i o n o f program

MOVE. L A0 , A2 ; I n i t i t a i l i z e
MOVE. L A2 , A0 ; Reset a t top o f loop
CMP.W (A0)+ ,(A0)+ ; Check ad jacen t memory l o c a t i o n s
BHI. S $2014 ; I f h i ghe r go t to MOVE.L −(A0) , D0
SUBQ. L #2,A0 ; I f lower move to the next e lement
CMP. L A0 , A1 ; Are we done?
BNE $2004 ; I f not , go back to CMP.W
MOVE.B #228,D7 ; I f done , e x i t to TUTOR
TRAP #14
MOVE. L −(A0) ,D0 ; Bubble up
SWAP.W D0 ; F l i p D0
MOVE. L D0 , (A0) ; S tore D0
BRA $2002 ;On to next i t e r a t i o n

END START ; l a s t l i n e o f source

3.5.2 See comments for a description of the program operation

3.5.3 SWAP Instruction

Without ROR: Copy register to temp register. Shift it one direction by 16 bits.
Shift the original register in the opposite direction by 16 bits. Add the two
registers.
With ROR: ROR 16 bits in place

6

3.5.4 ADDQ and SUBQ

ADDQ and SUBQ are quick instructions, meaning they take fewer cycles to
execute.

3.5.5 ADDQ vs ADD

ADDQ can only handle smaller, immediate values. ADD can handle all ad-
dressing modes.

3.5.6 SUBQ vs SUB

SUBQ can only handle smaller, immediate values. SUB can handle all address-
ing modes.

3.5.7 CMP (A0)+ (A0)+

The data at memory locations A0 and A0++ are compared.

3.6 Sample Program 2.6

3.6.1 Original Source

ORG $3000
START: ; f i r s t i n s t r u c t i o n o f program

CMP.W (A0) ,D0 ; Not used on f i r s t c y c l e
BCC $300C ; Branch to MOVE.W D0,−(A0)
MOVE.W (A0) ,−(A0) ;Move the data at A0 down one word
ADDQ #4,A0 ;Move A0 to the next word
CMPA. L A0 , A1 ; Are we done?
BCC $3000 ; I f carry c l ear , go back to top
MOVE.W D0,−(A0) ; I n s e r t new va lue
MOVE.B #228,D7 ; Ex i t to TUTOR
TRAP #14

END START ; l a s t l i n e o f source

3.6.2 Source for procedure 8

ORG $3000
START: CLR. L D0 ; C lears D0

CLR. L D7 ; C lears D7
MOVE. L A0 , A2
LEA. L $1000 , A5 ; s e t s up beg inn ing b u f f e r f o r input from keyboard
LEA. L $1000 , A6 ; s e t s up beg inn ing b u f f e r f o r input from keyboard
MOVE.B #241,D7 ; t r ap s to the termina l f o r data entry
TRAP #14

7

MOVE.B #226,D7
TRAP #14

LOOP: CMP.W (A0) ,D0 ; Compare (A0) wi th D0
BGE INSERT ; Branch to INSERT i f CARRY CLEAR
MOVE.W (A0) ,−(A0) ; Decrement A0 and move the va lue o f p rev ious

; content to new address .
ADDQ #4, A0 ; Increment A0 to po in t to the next e lement
CMPA. L A0 , A1 ; Compare the s i z e o f A0 and A1
BGE LOOP ; Branch to loop i f A1>=A0

INSERT: MOVE.W D0, −(A0) ; Decrement A0 and move D0 to memory address
; s p e c i f i e d by A0

MOVE.B #228, D7
MOVEA. L −(A2) ,A0
TRAP #14

END START ; l a s t l i n e o f source

8

3.6.3 Flowchart

Check word in list against value to be inserted

Should I insert here?

Move item in list up one word

Move A0 to next word

Check if at list end

Insert element into list

Return to TUTOR

Yes

Yes

No

9

4 Conclusions

This experiment was accomplished. TUTOR was introduced, as well as M68k
instructions. From this building block, students can work on more and more
complex programs for SANPER and can continue to learn about the functioning
of the machine.

10

