
Experiment No. 8

SERIAL COMMUNICATION USING THE

ASYNCHRONOUS COMMUNICATIONS

INTERFACE ADAPTER (ACIA)

ECE 441

Peter Chinetti

December 1, 2013

Date Performed: November 21, 2013
Partners: Zelin Wu
Instructor: Professor Saniie

1 Introduction

1.1 Purpose

The purpose of this experiment is to introduce the student to the following
topics:

• the Asynchronous Communications Interface Adapter IC (ACIA, MC6850)

• the fundamentals of serial asynchronous data communications

• the RS-232-C Serial Communications Standard

1.2 Background

1.3 The Asynchronous Communications Interface Adapter
(ACIA)

The ACIA (MC6850) provides the data formatting and control to interface se-
rial asynchronous data communications systems to parallel bus systems. When
the CPU writes data to the ACIA in a parallel format, the ACIA performs
a parallel-to-serial conversion before transmitting the data serially. Similarly,
when the ACIA receives data in a serial format, it performs a serial-to-parallel
conversion, which enables the CPU to read the data in a parallel format.

1

1.4 Asynchronous Serial Communication

In serial communication systems, a byte of data is transmitted one bit at a time
along the same physical wire. In asynchronous serial communications systems,
start and stop bits are added before and after the data to inform the receiving
device as to where the data begins and ends. When transmitting serial data
asynchronously, the data packet must adhere to the following specific format.
The first bit transmitted is the Start Bit, and this bit indicates the beginning
of a character word. This bit is always a logic 0.
Next, 7 or 8 Data Bits are transmitted, one bit at a time, starting with the Least
Significant Bit or LSB (i.e. D0), and increasing towards the Most Significant
Bit or MSB (i.e. D7).
The Parity Bit is sent next. It can be either logic 0 or 1 depending upon the
data and the type of parity selected in the ACIAs Control Register.
Finally the Stop Bits are transmitted. These bits indicate the end of a character
word. There can be either 1 or 2 Stop Bits, and they are always logic 1.

1.5 RS-232-C Serial Communications Standard

RS-232-C is the name given to the hardware standard for the serial transmission
of data from one computer to another computer or peripheral device. The volt-
age levels for a logic 0 are +3 to +15 Volts, and for a logic 1 are -3 to -15 Volts.
For ACIA #1 and ACIA #2, the RS-232 signals are made available on two
25-pin connectors (plug type DB-25 Connectors) at the back of the SANPER-1
Educational Lab Unit.
In the SANPER-1 Unit, the TTL serial data being transmitted by the ACIA is
first inverted, and then converted to RS-232-C type voltages by an integrated
circuit known as a TTL to RS-232-C Converter (Motorola Part No.: MC1488).
This device converts the TTL signals (0 or +5 Volts) to RS-232 signals (-3 to
-15 Volts or +3 to +15 Volts). The RS-232 data is then sent to the receiving
computer or peripheral device.
When RS-232 data is received, it is inverted and then converted to TTL level
voltages by an integrated circuit known as a RS-232-C to TTL Converter (Mo-
torola Part No. Experiment #8 - 3MC1489). This device converts the RS-232
signals (-3 to -15 Volts or +3 to +15 Volts) to TTL signals (0 or +5 Volts). The
TTL data is then input to the ACIA on the RX DATA pin.

2 Lab Procedure and Equipment List

2.1 Equipment

• SANPER System

• Computer with TUTOR software

2

2.2 Procedure

Test ACIA with a test program.

3 Results, Analysis and Discussion

3.1 Test Program

1 ORG $2100

3 FERROR DC.B ’ MADE A FRAMING ERROR’
EFERROR DC.B $00

5 OVRN DC.B ’YALL MADE A OVERRUN ERROR’
EOVRN DC.B $00

7 DTD DC.B ’DTD ERROR’
EDTD DC.B $00

9

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 SUBRT1

∗INITIALIZE
13 MOVE.B #$43 , $10041 ; r e s e t

MOVE.B #$15 , $10041 ; s e t output
15 RTS

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 SUBRT7

∗ENABLE INTERRUPTS
21 MOVE.B #$43 , $10041 ; r e s e t

MOVE.B #$95 , $10041 ; s e t with i n t e r r up t s
23 RTS

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 SUBRT8

∗INTERRUPT SERVICE ROUTINE
29 move . b $10041 , d0

bt s t #0,d0
31 bne READREQ

bts t #2,d0
33 bne DTD IRQ

∗CHECK IF ERROR FREE
35 READREQ

BTST.B #4,d0
37 beq next check

BSR ERROR
39 r t s

next check BTST.B #5,$10041
41 beq passed checks

BSR ERROR2
43 r t s

pas sed checks
45 move . b $10043 , (A0)+

bsr che ck tab l e
47 r t s

3

che ck tab l e
49 cmpa #$919 , a0

b l t check tab l e done
51 move . l #8,d0 ; i n i t counter

ch e ck t ab l e l o op
53 bsr subrt4

dbf d0 , ch e ck t ab l e l o op
55 l e a #$910 , a0

check tab l e done
57 r t s

DTD IRQ
59 LEA DTD,A5

LEA EDTD,A6
61 MOVE.B #227,D7

TRAP #14
63 RTS

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 SUBRT2

∗FILL
67

INPUT MOVE.B #241,D7 ; s e t up read trap
69 TRAP #14

RTS
71

73 TRANS
BTST.B #1,$10041 ; s ee i f c l e a r to send

75 BEQ TRANS ; sp in i f not c l e a r
MOVE.B (A5)+,$10043 ; wr i t e out chars

77 RTS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

79 SUBRT3
BTST.B #0,$10041 ; check i f data r e c i e v ed

81 BEQ SUBRT3 ; sp in
∗CHECK IF ERROR FREE

83 BTST.B #4,$10041 ; check f o r framing e r r o r
BNE ERROR

85 BTST.B #5,$10041 ; check f o r overrun e r r o r
BNE ERROR2

87 ∗NO ERROR
MOVE.B $10043 ,D0

89 RTS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

91 SUBRT4
BSR SUBRT3

93 BSR PRINT
RTS

95

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
97 ERROR LEA FERROR,A5

LEA ERROR,A6
99 MOVE.B #227,D7

TRAP #14
101 RTS

ERROR2 LEA OVRN,A5
103 LEA EOVRN,A6

MOVE.B #227,D7

4

105 TRAP #14
RTS

107

109 PRINT MOVE.B #248,D7 ; PRINT A CHAR IN D0
TRAP #14

111 RTS

113

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
115 SUBRT5

MOVE.B #9,D2 ; s e t up counter
117 MOVEA.L #$900 ,A5 ; s e t up input bu f f e r addrs

MOVEA.L #$900 ,A6
119

BSR SUBRT1 ; i n i t ACIA
121 BSR INPUT ; read char

LOOP:
123

BSR TRANS ; wr i t e char
125 BSR SUBRT3 ; read char

BSR PRINT
127 DBF D2,LOOP ; decrement loop

RTS
129

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
131 SUBRT6

133 bsr subrt1 ; i n i t
move . l #8,d2 ; loop 9 t imes

135 6 l oop bsr subrt4 ; read , then output to te rmina l
dbf d2 , 6 l oop ; t h i s does i t one at a time

137 r t s

139

141

143 START
DONE

145 MOVE.B #228,D7
TRAP #14

147

149

END START ; l a s t l i n e o f source

LAB8.X68

5

3.2 TTL/RS232

3.2.1 i

0 1 2 3 4 5 6 7

0

5

TTL

0 1 2 3 4 5 6 7

15

0

15

RS-232

6

3.2.2 S

0 1 2 3 4 5 6 7

0

5

TTL

0 1 2 3 4 5 6 7

15

0

15

RS-232

7

3.2.3 $

0 1 2 3 4 5 6 7

0

5

TTL

0 1 2 3 4 5 6 7

15

0

15

RS-232

8

3.2.4 ESC

0 1 2 3 4 5 6 7

0

5

TTL

0 1 2 3 4 5 6 7

15

0

15

RS-232

9

3.2.5 a

0 1 2 3 4 5 6 7

0

5

TTL

0 1 2 3 4 5 6 7

15

0

15

RS-232

3.3 Missing Block

A simple reason why there could be a missing block is that the transmitter
could have sent a block before the receiver was listening. This could be fixed
by properly connecting RTS and CTS, rather than tying to ground.

10

3.4 Polling vs. Interrupts

Polling is easier to implement, and will never interrupt critical sections of code.
Interrupts are more efficient and allow more total work to be done in normal
use cases, however, they are harder to implement.

3.5 SR Interrupt bits

SR bits 2 (DCD) and 0 (RDRF), can be configured to raise interrupts. The
DCD interrupt is raised when it is enabled in the CR, and the DTD line goes
high. The RDRF interrupt is raised when it is enabled in the CR and the
Receive Data Register is filled.

3.6 SR=0xA3

Interrupt true, no parity error, overrun error, no framing error, Clear To Send,
DCD error, transmit register empty, receive register empty.

3.7 CR=0xC2

Interrupts enabled, RTS high transmit interrupts inhibited, 7-E-2, 64 division
sampling

3.8 CR=0x81 (Even Parity)

3.8.1 !

Parity = 1

3.8.2 7

Parity = 0

3.8.3 N

Parity = 0

3.8.4 P

Parity = 1

4 Conclusions

This experiment was accomplished. An ACIA was tested.

11

