

ECE-446

Advanced Digital Logic Design

Laboratory Manual

Written By:

Dr. Jafar Saniie

Andrew Piorunski

Erdal Oruklu

© The Illinois Institute of Technology, Department of Electrical and Computer Engineering, 2004.

All rights reserved. No unauthorized copying of this document is permitted.

 i

Introduction

 This laboratory course is intended to provide the experimenter with experience

developing advanced digital logic circuits, and with downloading these circuits to an

FPGA programmable logic device. To this end, the VHDL hardware definition language

is used for specifying nearly all the circuits for this laboratory course. VHDL code files

may be entered into the Xilinx ISE circuit development environment for testing and

eventual download to a test board containing a Field Programmable Gate Array (FPGA)

programmable logic device.

 Some students may be taking this course as a remote student, or with a remote student

as a lab partner. There are some other tools they should become familiar with. The first is

the Elluminate software. This is the environment through which local and remote

students will interact with each other. It is recommended that students read through the

tutorial found in the Elluminate Manual, and answer the questions at the end.

 The other tools available to remote students are remote interfaces to the Oscilloscope

and Function Generator. Documentation for how to access these interfaces can be found

in Appendices F and G.

 A basic tutorial of the Xilinx ISE development environment, and the VHDL language

itself, is contained within the first few Orientation experiments of this laboratory manual;

therefore, this introduction will focus on the hardware to be used in this laboratory

course. The test board for this course is developed by Digilent, Inc. and is called the

Spartan-3E Starter Kit board built around a Xilinx XC3S500E Spartan-3E FPGA device.

1. The Xilinx Spartan-3E FPGA

 The Spartan-3E FPGA device is composed of a matrix of Configurable Logic

Blocks (CLBs), surrounded by an array of programmable Input/Output Blocks (IOBs).

Specifically, the XC3S500E FPGA that is used for this laboratory course contains 1,164

total CLBs in a matrix of 46 rows and 34 columns. A CLB in the Spartan-3E device is

organized into four slices. Each CLB is composed of four slices. Each slice, in turn, is

composed of two Look-Up Tables (LUT), some control logic, and two storage elements

to be used as a flip-flop or latch. There are two types of slices, two SLICEL and two

SLICEM per CLB. SLICEM slices have additional hardware, two 16x1 RAM blocks and

two 16-bit Shift Registers. This allows SLICEM slices to acts as not only logic but also

as distributed RAM and Shift Registers. Each LUT and its corresponding storage element

are called a Logic Cell (LC). Each LC in the slice is a versatile memory device, and is

used to store the functional specification of part of a larger digital logic circuit. These

LCs may act as standard memory, shift registers, or driving devices for a portion of a

circuit. From benchmark standards, Xilinx LCs (LUT plus storage element) have been

found to be more efficient then LUT only designs, making each slice equivalent to 2.25

simple LCs. This provides a total equivalent performance of 10,476 Logic Cells for this

device. The functional behavior of each LC in the Spartan-3E device is determined

automatically by the Xilinx ISE development environment based upon the circuit to be

programmed to the FPGA.

 While the logic cells in each CLB may be used as memory storage elements, this

could prove wasteful for memory intensive programs. For this reason, the Spartan-3E

 ii

FPGA contains twenty blocks of supplementary RAM, each containing 18K bits of

storage. Just as with programming the LCs in the FPGA, the usage and programming of

these RAM blocks is decided by the compiler in the Xilinx ISE development tool. When

the RAM is considered together with the CLBs in the FPGA, the XC3S500E has a total

of 500,000 system gates.

 The XC3S500E also contains twenty Dedicated Multipliers. The multiplier blocks

allow for full 18 bit two’s compliment multiplication with a full precision 36 bit output.

In addition to the smaller multiplication programmable ability of the LUTs these provide

the ability to perform efficient multiplication for a wide variety of applications.

 In addition, the XC3S500E contains 232 user available IOBs, defining the maximum

number of inputs and outputs possible for the device. Each IOB contains three pairs of

storage elements, an input pair, an output pair, and a three-state pair. Each of which

through a VHDL program, may be used as edge-triggered D-type flip-flops for registered

outputs, or may be bypassed for standard combinational logic output functionality. The

IOBs on the Spartan-3E Starter Kit board are configured to accept LVTTL voltage levels

of 0.0 volts for logic low, and 3.3 volts for logic high. Any external circuits that may be

constructed to interface with the Spartan-3E FPGA should not exceed these voltage

ranges under any circumstances. If this interface voltage range is not strictly adhered to,

permanent damage to the Spartan-3E Starter Kit board and Spartan-3E FPGA may result.

 This has been a very cursory description of the structure of the Spartan-3E FPGA

used in this laboratory course. For much more detailed information about the device

functionality, please consult the datasheet for the Spartan-3E family, which can be found,

along with a great deal of other useful information, at the Xilinx web site. The URL for

the company web site may be found in the References section at the end of this

introduction.

2. The Spartan-3E Starter Kit board

 While the Spartan-3E FPGA is a very capable device, it is not something that may

simply be dropped into a breadboard and programmed. Typically, complicated devices

require complicated interface protocols, and this device is no exception. Fortunately, the

people at Digilent, Inc. incorporated much of the hard work interfacing with this FPGA

into their 3E main board, allowing for a quite simple to use test system.

 The Spartan-3E Starter Kit board interfaces with a computer via its USB port. This

connection allows designs created in the Xilinx ISE development environment to be

downloaded directly into the Spartan-3E FPGA for testing and analysis. Configuration of

the FPGA is achieved through an industry standard protocol called boundary-scan JTAG.

This protocol allows anywhere from one to many FPGA devices to be daisy-chained

together and programmed sequentially from a single source. This programming source

may be a configuration PROM or, as in this laboratory course, an active signal source

such as the USB port.

 In addition to the JTAG support circuitry, the Spartan-3E Starter Kit board contains

an on-board crystal oscillator, a SMA connector for external clock sources, and an 8 pin

DIP socket. The boards used in this laboratory course have 50 MHz oscillators mounted.

In addition to the crystal oscillator, a pushbutton switch on the main board may also be

used as a clock source for designs downloaded into the FPGA. While this pushbutton

 iii

switch may be useful for some simple designs, it is not debounced, and may produce

undesirable effects when testing certain circuits.

 Finally, the Spartan-3E Starter Kit board is equipped with three expansion ports that

may be used to interface with other test equipment produced by Digilent, Inc. A large

FX2 expansion port and 2 6-pin expansion ports. These 6-pinexpansion ports are used

most frequently to interface directly with the PMOD-SWITCH boards discussed in the

next section of this introduction. Some of the later laboratory experiments, however, will

employ a Digilab breadboard inserted to the FX2 Edge Connector in order to interface

custom circuitry with the Spartan-3E FPGA.

3. The Spartan-3E Starter Kit board I/O and PMOD-SWITCH Board

 As this laboratory course proceeds, the experimenter will most likely become very

familiar with the Digilab PMOD-SWITCH interface board and main board I/O devices.

From the very first experiment onward, four toggle switches and eight individual LEDs

on the main board plus the eight addition switches provided by the PMOD-SWITCH

boards will be the primary means of interfacing with a circuit downloaded into the

Spartan-3E FPGA. In addition to these standard interface devices, the main board also

contains four pushbutton switches and a rotary push button, which may also be used to

provide data to the Spartan-3E FPGA. In order to utilize any of these interface devices,

inputs and outputs of a VHDL design are assigned to Spartan-3E FPGA pins, which, in

turn, are hardwired to specific devices. Appendix A of this laboratory manual contains a

Spartan-3E pin to I/O device mapping that will be used throughout this laboratory course.

 In addition to the simple I/O devices already discussed, the Spartan-3E Starter Kit

board also contains a 2 line by 16 character LCD display. Using LCD is a practical way

to display a variety of information using standard ASCII and custom characters. The

FPGA controls the LCD via the 4-bit data interface. Although the LCD supports an 8-bit

data interface, the Starter Kit board uses a 4-bit data interface to remain compatible with

other Xilinx development boards and to minimize total pin count. Most applications treat

the LCD as a write only peripheral and never read from the display.

The 2 x 16 character LCD has an internal graphics controller that has three

internal memory regions, each with a specific purpose; DD RAM, CG ROM and CG

RAM. The Display Data RAM (DD RAM) stores the character code to be displayed on

the screen. Most applications interact primarily with DD RAM. The Character Generator

ROM (CG ROM) contains the font bitmap for each of the predefined characters that the

LCD screen can display. The Character Generator RAM (CG RAM) provides space to

create eight custom characters Bitmaps.

 Beyond even the LCD display in terms of complexity, the main board also provides

both a PS2 port and a VGA port. The PS2 port allows for a mouse or a keyboard to input

data to the Digilab test system, and the VGA port allows data to be displayed on a

computer monitor. Both of these interface ports require complex timing and control that

will not be introduced in the course of the regular laboratory experiments, but may

optionally be explored in the final course project.

 iv

4. References

For further information on any of these hardware components, feel free to consult the

following web sites for datasheets and schematics:

1. For information about the Spartan-3E FPGA see: www.xilinx.com.

2. For information about the Digilab test board see: www.digilentinc.com.

Laboratory Experiment 1-1

Laboratory Experiment 1:

Code Conversion

1. Purpose

 In this lab, you will design and build a simple code converter circuit using the

Spartan-3E Starter Kit board, which is designed around the Xilinx Spartan-3E XC3S500E

FPGA. During this laboratory, you will gain experience using the Xilinx ISE digital

circuit development tools and the ISim circuit simulation tools.

2. Background

Converting data from a human-friendly format into a form that is understandable by a

machine is a key concept in any digital logic design environment. Computers and digital

logic circuits in general, are only able to interpret data in binary form. Every form of

data, from integers to characters, must be converted into a binary string in order for a

computer to be able to manipulate and store them. This process is called encoding the

data for use in a computer. Literally any data-encoding scheme will work as long as data

is converted into a binary form that the computer is programmed to understand. For this

reason, there are numerous different binary codes that may all represent the same thing.

For instance, the ASCII code (American Standard Code for Information Interchange)

utilizes a seven-bit string to represent 128 basic text characters, numbers, and control

characters used in word processing. More recently, with the introduction of the Internet

and globalization, a new code has been required to handle a vastly greater number of

characters from languages throughout the world. Unicode was introduced to handle the

vast number of characters and symbols now required for worldwide communication. It

uses up to 24-bits and several encoding algorithms to achieve this. Clearly, a machine

using ASCII codes would need some form of data conversion processing to understand

Unicode, and vice-versa. In fact, many web pages containing foreign languages may not

be displayed correctly depending on the Unicode support a given web browser allows.

This laboratory experiment will be focused on data conversion, but nothing as

complicated as ASCII to Unicode. When all that is required is to encode integers from 0

through 9, encoding data becomes much simpler, although there are still a great number

of different encodings that are possible. Binary Coded Decimal (BCD) is a code that uses

four bits to represent each of the digits from 0 to 9. Each integer value is encoded directly

in its binary form, producing several unused four-bit combinations. Excess-3 code is

similar to BCD in that it uses a four-bit encoding for each integer value, however, when

an integer is encoded, its value is first incremented by three, then converted to its binary

form. The overall effect is to add three to all the Natural BCD codes. While Natural BCD

encoding has six unused codes at the high end of the binary conversion (10 and above),

Excess-3 BCD has three unused codes at the low end (2 and below) and three at the high

end (13 and above). Table 1 shows the integer values from 0 through 9 and their

corresponding Natural BCD and Excess-3 BCD encodings.

Laboratory Experiment 1-2

Decimal
Natural BCD Excess-3

A3 A2 A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

Table 1 – BCD Codes

3. Preliminary Design

In this laboratory, two different code conversion circuits will be designed based upon

the data encodings in Table 1. The first circuit will capture an input number from the user

in Natural BCD form, and will output its Excess-3 BCD representation. The second

circuit that will be built will perform both code conversion processes depending on the

state of a selection input, SEL. When the selection input is low, the conversion will take

in Natural BCD and output Excess-3 BCD, just like the first conversion circuit described

above. However, when the selection input is high, this new circuit reads a number in

Excess-3 BCD and outputs its Natural BCD counterpart. Figure 1 below contains block

diagrams for both of these circuits.

Figure 1 – Converter Circuit Block Diagrams.

 Simple Code Converter

A3

A2

A1

A0

Y3

Y2

Y1

Y0

Natural

BCD

Excess-3

BCD

Universal Code Converter

A3

A2

A1

Y3

Y2

Y1

SEL = 0:

Natural BCD

SEL = 1:

Excess-3 BCD A0 Y0

SEL

SEL = 0:

Excess-3 BCD

SEL = 1:

Natural BCD

Laboratory Experiment 1-3

 With the exception of not including the unused codes for Natural BCD, Table 1 above

is essentially the truth table for the first circuit to be designed for this laboratory. Using

this truth table, the logic functions for each output of the simple code converter can be

relatively easily obtained and minimized using Karnaugh Maps. Recognize that the

outputs for the Universal Code Converter depend on one more input, namely the select

input, which makes Karnaugh Map minimization slightly more difficult than with the

Simple Code Converter. Design of this circuit can be made easier, however, by

recognizing that the select input simply chooses between two independent sets of

functionality.

Before coming to lab, you should:

1. Develop the logic functions for each output of the Simple Code Converter. Create the

full truth table, and minimize the logic using Karnaugh Maps or another preferred

method of your choice. Be sure to capitalize upon DON’T CARE conditions where

possible.

2. Create the full truth table for the Universal Code Converter circuit. Be sure to include

DON’T CARE terms where they apply.

3. From this truth table, derive the logic functions for each output of the Universal Code

Converter. Note that the truth table is identical to that for the Simple Code Converter

when the select input is zero. You may, therefore, minimize only the half of the truth

table corresponding to a select input value of one. The select input may then be used

as a conditional check within an IF statement when the circuit is implemented.

4. Bring the output logic functions for each of the two circuits to the laboratory where

they will be implemented using VHDL code. The laboratory procedure will then

discuss the steps for creating the necessary VHDL code, simulating both designs, and

programming Spartan-3E Starter Kit board.

4. In the Lab

 The in-lab portion of this laboratory procedure is divided into two main parts: the

Simple Code Converter and the Universal Code Converter. The procedure for the Simple

Code Converter contains an in-depth walkthrough of project creation, simulation, and

programming of the Spartan-3E Starter Kit board, in addition to the basic operations

offered by the VHDL language that will be necessary to specify the functionality of the

code converter itself. The procedure for the Universal Code converter will then introduce

some additional operations offered by the VHDL language that facilitate a simplified

specification of the expanded code conversion functionality.

Laboratory Experiment 1-4

4.1 The Simple Code Converter

4.1.1: Starting a Project

1. Begin by starting the Xilinx ISE Project Navigator software. If there is already a

project running, close that project and create a New Project. This is done under the

File drop-down menu, just like creating a new file in most other applications.

2. In the dialog box that pops up, set the directory in which you would like all the files

you will create to be saved, and enter the name of the project you would like to

create. All the files created by the ISE tools will be placed in a file with the project

name specified by you, which itself resides in the directory you picked. In the Top-

Level Module Type dropdown, ensure that HDL is listed, and hit Next >.

3. In the next dialog box, under Device Family, select Spartan3E. Under Device, select

xc3S500E, which specifies the type of Spartan-3E FPGA used on the board. Under

Package, select FG320, which specifies the package type for the FPGA. Under Speed

Grade, select -4, which specifies the speed grade of the FPGA. For the Synthesis Tool

selection, XST (VHDL/Verilog) should be selected. The Simulator selection should

be set to ISim (VHDL/Verilog). When all of these selections are verified, hit Next >.

On the next window, hit Finish to conclude creating your project.

4.1.2: Adding a VHDL Code Module to the Project

4. From the previous steps, you should have a project created in the Project Navigator

environment. In the Hierarchy in Design window on the upper left side of the screen,

you will see a listing for the device you specified under the project name you entered.

Right click the device object (xc3500e-4fg320) and select New Source from the pop-

up menu.

5. From the selections provided, choose VHDL Module to create a new VHDL code

segment. You will be prompted to enter a name for the file, and then you will be

given a screen to enter input and output ports. Enter a port name for each input and

each output for the Simple Converter, and select the direction (in or out) for each

port. Click Next > to be given a summary of your VHDL module.

6. Hit Finish and a window containing VHDL code will be created. Note that a .vhd file

has been added to the device in the Sources in Project window of the Project

Navigator.

Laboratory Experiment 1-5

4.1.3: Programming the Simple Converter

7. Before doing anything else, look at the beginning of the VHDL code provided to you.

Within the entity definition, you will see the port names you previously entered,

followed by their direction and data type.

8. Your code will be entered between the “begin” and the “end” statements in the

architecture section of the VHDL code file created for you. Your logic functions may

be entered in plain English. For instance: the statement

Y3 = A3•A2

 will be entered as:

Y3 <= A3 AND A2;

VHDL commands of note:

 Combinational output assignment: output_signal_name <= assigned_value

 Logical AND: signal_1 AND signal_2

 Logical NAND: signal_1 NAND signal_2

 Logical OR: signal_1 OR signal_2

 Logical NOR: signal_1 NOR signal_2

 Logical Inverse: NOT signal_name

 Logical Exclusive-OR: signal_1 XOR signal_2

 Logical Exclusive-NOR: signal_1 XNOR signal_2

 Comment Delimiter: -- comment-text

 It should also be noted that each line of code must be terminated with a semicolon (;),

just as in C/C++. Using the commands listed above, you may enter the logic functions

defining each output of the Simple Converter on your own.

9. Save your VHDL file and synthesize it. This can be done by highlighting the .vhd file

in the Hierarchy in Design window, and then double-clicking the Synthesize XST

process in the Processes window on the lower left side bottom. The development

tools will detect any coding errors during this process.

4.1.4: Assigning Pin Numbers to Ports

10. After synthesizing the completed VHDL file, pin numbers must be assigned to each

input and output port for programming the Spartan-3E Starter Kit board later. To do

this, expand the User Constraints and double-click the I/O Pin Planning(PlanAhead)

– Post-Synthesis. This will start PlanAhead program. Click on yes on the window

appearing to create a new constrain file.

11. On PlanAhead application, you’ll see Netlist window on the upper left side of the

screen. Click on I/O Ports tab on the bottom of Netlist window. Expand Scalar ports

and select a port to assign pin. On I/O Port Properties window on the bottom of

Netlist window, assign pin by typing pin location on the Site textbox. To confirm the

pin assignment, click on Apply and the pin assignment will be done for the selected

Laboratory Experiment 1-6

port. Select each port and assign it a pin location (Loc column) based upon the table

found in Appendix A of this laboratory manual. Pin numbers may be entered

manually.

12. After assigning pin numbers to each port, save the file and close PlanAhead program.

Highlight the .vhd file in the Hierarchy in Design window and double-click the

Implement Design process in the Processes window. This will map your design to the

Spartan-3E device you selected.

4.1.5: Simulating the Simple Converter

Before going to further step, in order to simulate on ISim with VHDL Test Bench, you

must have a clock variable declared on your VHDL Source File. Go to Port declaration

on your VHDL source code, and type in [CLK : in std_logic;] in the port declaration. Port

declaration can be found on the very first lines of your VHDL code, excluding the auto-

generated comments.

13. In order to simulate the design you have entered, another new source must be added

to the project. Right-click the device and add a New Source. Select VHDL Test

Bench and give it a name different from the name of the VHDL file it will be testing.

This naming difference is important so as not to confuse the simulator. As with the

constraints file, the VHDL source to which the simulation file will apply must be

selected in the next dialog box. Select your VHDL file, and finish creating the new

file.

14. A test bench VHDL file will be created with templates for your convenience. You can

specify your own clock period, input values and more. To adjust the clock period,

find where it defines a clock period constant. By default, the clock period is set to

10ns. To adjust your input variables, find a comment where it says “insert stimulus

here”. You can assign input variables here to simulate your implementation.

Assigning method is identical to what we do for VHDL file. Test bench file itself is a

VHDL file as well, so you should be comfortable with assigning test values to the

input variables. What is important is to include a wait statement between two

different test values. You should give at least one clock period wait statement in

between them. Otherwise, your test will not work properly as expected. Once you are

done writing your own test bench VHDL code, save it.

15. To simulate your test bench, select Simulation radio button next to Implementation,

on top of the Hierarchy in the Design window. Then, select the VHDL test bench file

listed in the Hierarchy in the Design window. In the Processes window, expand the

ISim Simulator and double-click the Simulate Behavioral Model Program. Before

running ISim, right-click on Simulate Behavioral Model and click on Process

Properties. Your simulation must fall into the Simulation Run Time specified on the

pop-up window, to verify all of your test cases. Change Simulation Run Time if the

default value is not enough to fulfill your test bench. ISim will start and the output of

your design will be simulated for the input waveform that you specified.

Laboratory Experiment 1-7

16. A new window should appear. It will most likely have a black background with some

white vertical lines cutting across it. In order to see the test results, find the Zoom to

Full View button that should be on the left and on the top of the waveforms:

17. To make checking the simulation results easier, a vertical cursor may be used. The

values across all the input/output ports for the time at which the cursor is set will be

shown in the column to the right of each port name. The cursor may be moved by

clicking within the waveform at a point of interest. By holding the click from one

point of interest to another, you can read the time elapsed between two events.

18. When you are certain that the functionality of the Simple Converter is correct, you

may exit the ISim simulator and proceed to programming the Spartan-3E Starter Kit

board.

4.1.6: Programming the Spartan-3E Starter Kit board

19. To return to the implementation mode, select the implementation radio button.

Double-click the Generate Programming File process and wait for the program to

complete. After the program file is generated, expand the Configure Target Device

process with the “+” next to it, and find the Manage Configuration Project

(iMPACT) executable listed there. Ensure that the Spartan-3E Starter Kit board is

connected to power and to your computer’s USB port and run this program.

20. Depending on the version of your ISE, it may be different but the process is the same

looking as a big picture. On the upper left on the screen, in iMPACT Flows window,

double-click on Boundary Scan. Right-click on the right side of the window where

it says “Right click to Add Device or Initialize JTAG chain”, then click on

Initialize Chain. On the pop up window, go to your project’s folder (directory) and

find your_project_name.bit file and open it. This step is very critical. If you select a

bit file other than your current project, it may not behave as you desired. In fact, this

will load completely different program to the Spartan3E FPGA board. If the program

prompts you whether you want to attach an SPI or BPI PROM to this device, click

on No. Click on Bypass for the next two pop up window and hit OK on Device

Programming Properties window.

21. After choosing the configuration file to be used, the program will present you with an

icon representing the .bit programming file that was generated from your code. This

icon usually sits on the very left side. Right-click this icon and select Program. The

board should program, allowing you to test the functionality of your Simple

Converter circuit physically, with a success message on the screen.

22. Show the lab instructor your functioning circuit before proceeding to the next section

of this laboratory.

Laboratory Experiment 1-8

4.2 The Universal Code Converter

 Much of the basic work for the Universal Code Converter is the same as for the

Simple Converter; so, if there are any questions about how to proceed beyond the

instruction given here, see the previous section of this laboratory procedure.

23. Open a new project and add a VHDL module to it. The main difference between this

circuit and the Simple Converter is the addition of the select signal to change the

functionality. While the output functions could be found using five variable Karnaugh

Maps, the selectable nature of this circuit lends itself nicely to the use of IF

statements.

24. In order to use IF statements, they must be nested within a PROCESS declaration. To

make your code into a process, between the “begin” and “end” statements of the

architecture code (where your functionality was entered for the Simple Converter);

enter PROCESS followed by all the input signals in parentheses on the same line. On

the next line, enter BEGIN, then leave a few lines of space and finally enter “END

PROCESS;” to complete the process. The result should appear as follows:

PROCESS (input_signal1, input_signal2, input_signal3, …)

BEGIN

END PROCESS;

25. In the empty space you left, an IF statement may be entered. The basic format for an

IF statement in VHDL is as follows:

IF condition check THEN

 Sequence of Statements

ELSIF condition check THEN

 Sequence of Statements

ELSE

 Sequence of Statements

END IF;

 Similar to programming in C/C++, an IF statement is not required to have an

accompanying ELSEIF or ELSE statement, however, every IF statement must have

an accompanying END IF to close the functionality. In addition, multiple condition

checks may be done within a single IF statement through the use of standard VHDL

logical operators, such as AND or OR.

 The following operators may be used in the condition check statement:

 Equal To: signal_name = ‘bit_value’

 Less Than: signal_name < value

Laboratory Experiment 1-9

 Greater Than: signal_name > value

 Less Than or Equal To: signal_name <= value

 Greater Than or Equal To: signal_name >= value

 If the input signal is being compared to a logic value, this value must be surrounded

by single quotes for the synthesizer to interpret its meaning correctly. For the

Universal Code Converter, you will be checking the value of the select input signal.

When this signal is zero, the sequence of statements implementing the BCD to

Excess-3 conversion should be executed. When the signal is one, the Excess-3 to

BCD conversion code should be executed instead. Enter the code for both

conversions under the appropriate portions of your IF statement and save your VHDL

file.

26. Synthesize your design to check for coding errors, and assign pin numbers to the

ports on your new program.

27. Modify previous test bench VHDL file to this project and set up your test plan.

Simulate your Universal Code Converter circuit using ISim to verify the proper

functionality. If your circuit does not function as expected, correct the VHDL code

and run the simulation again.

28. When the simulation provides the results you expect, generate the programming file

and download it to your Spartan-3E Starter Kit board for physical testing.

29. Verify the circuit functions as required when the select signal is both high and low.

When your circuit is functioning correctly, show the lab instructor its operation.

5. References

Additional information about ASCII code may be found at the following website:

www.asciitable.com

Additional information about Unicode may be found at the following website:

www.unicode.org

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 2-1

Laboratory Experiment 2:

Four-Bit Ripple-Carry Adder/Subtractor

1. Purpose

 In this lab, you will design and program a four-bit ripple-carry adder/subtractor

circuit using modular design techniques. All of the necessary VHDL coding concepts

and procedures will be introduced in the laboratory and implemented by the

experimenter.

2. Background

 Some circuit designs lend themselves very well to expansion through replication of

basic processing elements. The ability of a circuit to be expanded through replication

depends very much on the nature of the problem that the circuit is solving. If the problem

itself allows for partial results calculated from subsets of the full input to be combined to

get the correct answer, this type of expandability is often possible. It is frequently easier

to replicate the design of a circuit that processes a small subset of a large input set and

combine the individual results, than it is to design a single circuit to manipulate the full

data set.

 One such circuit that may be easily expanded in this way is the ripple-carry adder.

By tying single-bit full-adder circuits end-to-end, a ripple-carry adder of any size may be

constructed. All that is necessary to achieve the proper functionality is to tie the carry-

out port of each block to the carry-in port of the next block, forming a chain. Then, by

providing corresponding operand bits to each adder block, the final sum can be calculated

bit-by-bit along the chain. The following table contains the truth table for a single-bit

full-adder circuit.

Carry-In A B Sum Carry-Out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 1 – The truth table for the single-bit full-adder.

 A major point in favor of the VHDL language is that it supports modular circuit

design very simply and effectively through a hierarchical design practice. The module to

be replicated is first coded in VHDL, allowing its functionality to be tested independently

of all other portions of a larger design, similar to a function in C/C++. A higher level

VHDL module may then reference these lower level sub-modules by including their code

Laboratory Experiment 2-2

in the larger project. The functionality of the component may then be accessed by

passing it an input signal set and utilizing the output signals it generates in turn.

 You may recall that a ripple-carry adder circuit, such as the one described earlier, can

be quite easily made into an adder/subtractor circuit through the introduction of some

strategically placed XOR gates and the introduction of an operation select signal. This

circuit requires one XOR gate for each single-bit adder block, whose output is tied to one

of the operand inputs of the block. One of the XOR inputs is tied to the operand bit that

is either added to or subtracted from the other operand, while the other input is tied to the

operation select signal. When the operation select is logic low, the XOR gates have no

effect on the operand tied into the other input, so the gates effectively act as buffers.

When the operation select input is logic high, however, each of the XOR gates act as an

inverter for the operand bit tied to the gate. In this way, we have constructed a circuit

that either adds two multi-bit operands, or performs a one’s-compliment subtraction

operation, depending on the setting of the operation select input. To complete the design

and produce two’s-compliment subtraction, the operation select input can also be tied to

the carry-in input port of the first adder in the chain. This is the design that will be

implemented in this laboratory, and is illustrated in the following schematic:

Figure 1 – The schematic diagram for the four-bit ripple-carry adder/subtractor circuit.

3. Preliminary Design

 The preliminary design for this laboratory experiment is fairly straightforward. Use

any method you choose to develop Boolean equations for the outputs of the one-bit full-

adder, the truth table for which is shown in Table 1. In addition, the external XOR gate

should be included in each block to make the design of the complete four-bit circuit

easier. This may be done quite simply using the Boolean equations for the standard one-

bit adder. Every time the B input appears in one of the equations, it may be replaced with

the following:

(B  op_sel)

Before coming to lab, you should:

1. Develop the output logic equations for the one-bit full-adder circuit using the truth

table provided above.

Laboratory Experiment 2-3

2. Replace every occurrence of input B in your logic equations with the logic expression

shown above. This will incorporate the XOR gate that is shown externally to each

adder block in Figure 1 into the adder block itself, and will make cascading the blocks

together easier.

3. Write a VHDL file that will implement your one-bit adder/subtractor module and

bring it to the laboratory. Be sure to include input and output ports for both operand

bits A and B, the operation select input, the carry-in, the carry-out, and the resulting

sum in your design.

4. In the Lab

 The primary goal of this laboratory procedure is to introduce the experimenter to the

concepts of modular VHDL programming. To that end, this laboratory procedure will

detail the new VHDL coding concepts required to implement the modular design, and

will not focus on the usage of the ISE programming environment itself. If you have any

questions regarding the basic operation of the development environment, please see one

of the Xilinx ISE tutorials or a previous laboratory experiment detailing what you require.

 The VHDL language allows for straightforward programming with all necessary code

included in the definition for a single entity, as has been used up to this point; however,

this only scratches the surface of the language capability. Much like a high-level

computer language allows for functions to encapsulate sections of code, VHDL allows

for the creation of sub-entities containing their own code. The code in these entities is

then executed based upon passed in input values and produces results that are assigned to

output signals. This can allow a large design to be broken down into more manageable

parts, and can make an insurmountable task much more straightforward. This laboratory

procedure will walk you through the process of creating these sub-entities and through

the process of introducing internal signals that may become necessary when connecting

system components together.

1. When you get to the lab, open the Xilinx ISE Project Navigator and create a new

project.

2. Add the file for the one-bit adder/subtractor you created earlier to the device in the

Sources in Project window. This can be done in a similar fashion to creating a new

VHDL module, however, instead of selecting New Source, select Add Source and

choose the file you wish to add to the project. It is recommended to name this file

something like adder1 to let you know that it is a one-bit adder/subtractor.

3. When you have finished adding your file to the project, simulate it using ISim to

verify that it functions as you expect. It is important that you fully test this file,

because it will act as a sub-component for a larger project later, which could be

difficult, if not impossible to fully test using all the possible input combinations.

Laboratory Experiment 2-4

4. When you are satisfied that the code you have developed works successfully, create a

new VHDL code file in the main project, and name it something like adder4 to

indicate this will be a four-bit adder. This file will contain the higher-level code for

the four-bit version of the adder/subtractor. Remember, with this file, there will be

four input ports for each operand, an input for the operation select signal, four output

ports for the sum, and an output port for the final carry-out.

5. When the skeleton for the new VHDL file is created for you, you must let the

program know that the one-bit adder in the other VHDL file will be used within this

new file. The single-bit adder must be added as a component within the four-bit

adder VHDL file. Declaration of components is done immediately following the

architecture definition line in the new VHDL code. It consists of declaring the

component name as the name of another VHDL entity in the project, listing the input

and output ports of the sub-component, and ending the component definition. An

example of the code required to do this is shown below:

architecture name of current VHDL entity is

 component entity name of sub-component (i.e. adder1)

 Port(inport1, inport2, …, inportN : in std_logic;

 outport1, outport2, …, outportN : out std_logic);

 end component;

6. The next step in the process of creating the four-bit adder is to create some internal

device signals. These signals will be used to tie the carry-out of one adder block to

the carry-in of the next. Since these signals do not need to be sent to the outside

world, there is no need to assign ports to them; instead they may be handled

internally. There are three of these internal connections required, since the first carry-

in is tied to the operation select input, and the last carry-out is sent to an output port

for viewing. Internal signals, like the component definitions, go between the

“architecture” statement and the “begin” statement signaling the start of the VHDL

code. Declaring internal signals may be done using the following command:

signal signal1, signal1, …, signalN : std_logic;

 Remember, you will need three of these internal signals for this design. You may

name them however you wish.

7. The final step in creating the four-bit adder is to actually add the four single-bit

adders to the new file, and connect them together to obtain the proper functionality.

When a component is instantiated in a VHDL code segment, it must be given a

component name followed by a colon and the entity name of the component. A port

mapping of signals in the high-level design to component inputs and outputs must

then be made for each sub-component in the design. Ports are assigned to each

component in the same order that they were listed in the component declaration

earlier. Any signal in the high-level VHDL entity may be assigned to an input or

output port of the lower-level entity. You may now add four single-bit adder

Laboratory Experiment 2-5

components to your design, and assign the input and output ports similarly to the

following code segment:

 componentName1 : entityName

 port map (signalToInport1, signalToInport2, …, signalToInportN,

 signalToOutport1, signalToOutport2, …, signalToOutportN);

 componentName2 : entityName

 port map (signalToInport1, signalToInport2, …, signalToInportN,

 signalToOutport1, signalToOutport2, …, signalToOutportN);

 .

 .

 .

 componentNameN : entityName

 port map (signalToInport1, signalToInport2, …, signalToInportN,

 signalToOutport1, signalToOutport2, …, signalToOutportN);

 Remember that the signals should be listed in the port mapping statements reflecting

the same order as the input and output ports listed in the component declaration

statement. It should also be noted that several different kinds of components may be

added to a single VHDL file, and they are distinguished in the code above by using

different entity names.

8. Save your new file and look at the Sources in Project window. If you have done

everything correctly, you should notice that your one-bit adder VHDL file is now

nested below the four-bit adder VHDL file. This means that your new file utilizes the

code in the previous file in part of its functionality.

9. Assign pin numbers to the input and output ports in your design. Since you will need

all eight switches for the two operands, you may use one of the push-button switches

for the operation select input.

10. Synthesize your design to ensure that you have no syntax errors. If you have errors,

fix them and re-compile your design. When you have no syntax errors, generate the

programming file for your design in preparation for programming the Spartan-3E

Starter Kit board.

11. Program your Spartan-3E Starter Kit board with your four-bit adder/subtractor and

ensure that the circuit functions as you expect in both the addition and subtraction

modes. Remember, the carry-out output is only useful when using the addition

functionality of the circuit. This value will often have no meaning when using the

subtraction functionality. The final result of the subtraction is contained in the four

bits of the sum, and is shown in two’s-compliment form. When your design functions

properly, show your lab instructor its behavior.

12. If you do not wish to have multiple files containing your code, any code for sub-

entities may be copied into the file that will be using them. This localizes all the code

Laboratory Experiment 2-6

in a single file, but makes the VHDL harder to read due to the clutter. You may use

whichever method you prefer. However, if you combine all the code in a single file,

you may need to replace all the “std_logic” signal types with type “bit” in order for

the compiler to function properly.

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 3-1

Laboratory Experiment 3:

Hazards and Glitches

1. Purpose

 In this lab, you will learn about the transient behavior of certain digital logic circuits, and will

gain experience using the logic analyzer to observe the output of a circuit immediately following

an input transition. In order to achieve this, the circuits for this laboratory will be made using

discrete components, rather than the Spartan-3E Starter Kit board.

2. Background

 A glitch is an unwanted transient pulse at the output of a combinational circuit, and a circuit

with the potential for a glitch is said to have a hazard. Not all designs will produce glitches,

however, if the timing of a circuit is of critical importance, the potential for glitches must be

considered and their presence may be corrected. In order to see examples of glitches, the logic

analyzer will be required. The operational instructions for the Agilent MSO6032A Logic

Analyzer may be found at the end of this laboratory experiment.

2.1 A Circuit with a Static-1 Hazard

 Consider the four variable Boolean function F(A,B,C,D)=(1,3,5,7,8,9,12,13). The

Karnaugh map for this function is shown below:

Figure 1 – The Karnaugh map for the specified Boolean function.

The minimized sum of products form for this function is:

DACAF 

0 0

0 0

0 0 0 0

1 1

1 1 1 1

1 1

10 11 01 00

00

01

11

10

AB

CD

Laboratory Experiment 3-2

The following figure shows a physical implementation of this function.

Figure 2 – Circuit implementing the specified logic function.

 In order to observe the glitching behavior of this circuit, the output of the circuit may be

examined for several input transitions. First, the input data may be changed from ABCD = 1100

to ABCD = 1101. When the inputs are 1100, the output of gate G1 is 1 while G2’s output is 0,

forcing the output from G3 to be 1. When the input data changes by a single bit to 1101, the

output of gates G1, and hence, G3 do not change, therefore, a glitch will not occur for this input

transition. Now consider another single-bit change in the inputs to the circuit, from 1101 to 0101.

When A goes low, A’ will become high, but only after a gate delay for an inverter, meaning that

for a short time, both A and A’ are low. This allows the outputs from G1 and G2 to be low at the

same time and forces F to go low. When A’ finally becomes high, G2 will go high and F will

return to the correct value of 1. This situation illustrates a static-1 hazard in the circuit design.

2.2 Correction of a Circuit to Prevent Hazard Conditions

 In order to remove hazards in a circuit design, redundant prime implicants must be included

to connect any adjacent, but separate, implicants that are already necessary for the design. It is

up to the circuit designer to decide which product terms should be added to the sum-of-products

function, F, in an effort to eliminate hazard conditions.

3. In the Lab

1. Using the logic analyzer, find the propagation delay for an inverter in a 74LS04 chip. Attach

the input for the inverter to a clock signal. Connect the Channel 0 probe of the logic analyzer

to this clock signal, and attach another channel probe to the output of the inverter. Use the

clock signal input for the inverter to trigger the logic analyzer.

2. Construct the circuit shown in Figure 2 of the Background section of the laboratory using

discrete components. Repeat the observation from Step 1 above with one of the inverters in

this circuit. Has the propagation delay of the inverter changed and why?

3. Confirm the existence of the glitch discussed in the Background section of this laboratory by

providing the circuit with the input transition 1101 to 0101.

4. Construct a version of the circuit that does not exhibit any hazard conditions. Provide this

circuit with the same input transition from Step 3 above, and display the outcome on the logic

analyzer.

A

C

A

D

F

G1

G2

G3

Laboratory Experiment 3-3

Notes:

 The glitch duration that should result for the circuit being analyzed is very small, on the order

of a single inverter delay. In order to see these glitches, the maximum sampling rate for the

logic analyzer should be in the range of 2 – 5 ns.

 Logic analyzers are typically used to debug sequential circuits, and their trigger conditions

need to be sequential clock or input transitions. Since the circuit being analyzed for this

laboratory is combinational, a clock signal should be used to generate the desired input

transition for input A.

4. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 3-4

Logic Analyzer Familiarization

1. Background

 You have already become familiar with the use of an oscilloscope for displaying voltage

versus time. The oscilloscope can be used as a tool for logic circuits as well as analog circuits,

since different voltage ranges represent different logic values. The biggest drawback of doing

this is that oscilloscopes have a limited number of channels. In complex logic circuits, we may

want to observe several signals simultaneously.

 Logic analyzers alleviate this problem. They display logic values that represent the value of

digital signals versus time. Logic analyzers can display several of these signals simultaneously,

making them ideal for debugging complex circuits. Logic analyzers are no substitute for an

oscilloscope when debugging tricky analog problems because they can display only logic one and

zero values. However, they excel when you are attempting to debug complex sequential circuits.

 Logic analyzers operate by repeatedly sampling data inputs and temporarily storing them

while searching for a trigger condition. If no trigger condition is detected, stored values are

overwritten by new values as they are sampled. If the trigger condition is detected, then the

stored data is shown on the display so that the user can see the values of the signals before,

during, and after the trigger condition. In the logic analyzer, these values are displayed as traces

similar to an oscilloscope’s traces. The traces can be formatted to display binary, octal,

hexadecimal or user-defined values.

 A major advantage of logic analyzers is that they can collect this data at high speed, making it

possible to test circuits at full clock speed where errors are likely to occur. Logic analyzers are

extremely useful when debugging sequential circuits, which may contain many signals that

change at different times. Examining the signals with a logic analyzer allows you to see if the

circuit is behaving properly and, if not, to isolate the source of the problem. Unlike an

oscilloscope, which triggers only on a single signal, logic analyzers can trigger on patterns of

multiple inputs, making it possible to specify exactly the sequence of events that you wish to

examine. Figure 1 shows a diagram of the Agilent MSO6032A logic analyzer’s front panel.

Notice the similarity between its controls and controls on an oscilloscope. This similarity is

intentional to make the logic analyzer easy to learn and use.

Laboratory Experiment 3-5

Figure 1 – Agilent MSO6032A front view

Figure 2 – Agilent MSO6032A back view.

2. Logic Analyzer Basics

 There are 16 channel probes connected to the back of the logic analyzer via a ribbon cable.

The probes are grouped together into two pods of eight probes, and each probe has a unique

number between 0 and 15 that corresponds to its channel number. There is also a ground probe

connected to each pod that should be attached to the circuit’s ground.

 Each probe is connected to a micrograbber. The micrograbber is used to attach to wires or

integrated circuit pins. Please be gentle using the probes and micrograbbers - they are easy to

Laboratory Experiment 3-6

break. Always use micrograbbers - do not insert wires directly into the probes since this may

damage the springs inside them.

 To connect a probe to test your circuit, first turn off the power, then connect the micrograbber

to the circuit in one of the following ways: 1) to the end of a short piece of wire inserted into the

breadboard at your test point or 2) connect the micrograbber directly to an integrated circuit pin.

Be careful to avoid shorting two pins together though. It is important to turn off the power so

you do not short out your circuit when making the connections. Figure shows an example of

connecting the micrograbbers to a circuit under test.

Figure 3 - Micrograbbers Attached To Circuit Under Test.

 The controls on the front panel of the logic analyzer can be divided into the following groups:

softkeys, channel, horizontal, trigger, storage, and general controls.

Softkeys are located at the bottom on the display and are used in conjunction with other controls.

A legend will appear at the bottom of the display above each softkey describing its function

depending on what other controls are in use.

Channel controls are used to select which channels will be displayed. Turn the Channel Select

knob to position the desired channel on the display. You can assign a label instead of the channel

name by pressing the label button and entering a name. The on/off button is used to add or

remove a selected channel to or from the display. The position knob is used to move the position

of a selected channel up or down with respect to the other display channels. The label button is

used in conjunction with softkeys to label different channels with signal names.

Horizontal controls adjust the time scale and a delay from the trigger point to the display. The

time/div knob controls the time scale. Turning this knob counterclockwise lengthens the scale up

to a maximum of 1 second per division, while turning it clockwise shortens it to a minimum of

2ns/division. The trigger time of each trace is shown at the center of the display with an equal

time before and after the trigger. The delay knob can be used to shift where the center point is

displayed. This is used to scroll the time axis and display output before and after the trigger.

Trigger controls select how the logic analyzer captures data. Triggers can be specified in three

ways. When the Edge button is pressed, the softkeys allow you to select a channel and an edge

type of rising↑, falling↓, or glitch↕. This is similar to oscilloscope triggering. When the Pattern

Laboratory Experiment 3-7

button is pressed, the softkeys allow you to specify a multiple bit pattern. Each displayed input

can be specified as a high, low or don't care value using the softkeys. Any time the inputs match

this condition the logic analyzer is triggered. This is especially useful when debugging complex

sequential circuits. The Adv button allows the specification of more advanced triggers. The

Agilent MSO 6032A manual describes these in detail.

Storage controls determine how data is collected and stored. The Run/Stop key is used to turn

the collection of data on (Run) or off (Stop). Pressing the Run button once causes the logic

analyzer to continuously wait for a trigger and display data each time a trigger is encountered.

Pressing it a second time stops this process. The Single key waits for a trigger condition once

and display the result. This is useful when you want to see what happens in response to a single

trigger event rather than repeated triggers. The Auto-Store button places the logic analyzer into a

mode that displays values for previous traces at half brightness while the current trace is

displayed at full brightness. This can be used to see what happens over multiple occurring

events.

General controls are used to set up what is displayed. You can modify the display and measure

time between events. The Measure Time button allows you to measure time between events.

The Save/Recall buttons work with softkeys and allow you to save configurations and restore

them. You will often use these buttons in conjunction with the Default softkey to set the logic

analyzer to display all channels. The Autoscale button is particularly useful because it will

configure the logic analyzer to display all channels on which inputs are active and will guess an

appropriate time scale. This is useful for quickly setting up the display, but it will not display

channels on which there is no activity. On the bottom left of the display, there is a row of dashes

and/or arrows. An up-down arrow indicates activity on a particular probe channel, whereas, a

dash does not.

The channel inputs include the probe connector and Logic Levels button. This button allows you

to specify which logic family you will be debugging. This should be kept to the default value key

TTL, which is the logic family we are using in this course.

Laboratory Experiment 3-8

Figure 4 - Front Panel Controls.

Run

Control

s

Trigger

Controls

Channel

On/Off

Key

Intensity POWER USB Vertical

Position

Control

Vertical

Sensitivity

Control

Autoscale

Softkeys

Horizontal

Controls

Measure

Keys

Waveform

Laboratory Experiment 4-1

Laboratory Experiment 4:

Error Correcting Codes

1. Purpose

 In this laboratory, the experimenter will be introduced to the concepts involved with

error correcting codes. In particular, this experiment utilizes a Hamming Code to detect

and correct single bit errors in a data transmission.

2. Background

2.1 Error Detection and Correction Codes

Whenever data is transmitted from one location to another, either between

components in a single system or between separate computers, ensuring that the data

arrives at its destination error free is of critical importance. As a set of data is being

transmitted over some form of communication line, ambient electronic noise may cause

one or more bits in the transmission to become corrupted. Often, this corruption takes the

form of a bit flip, either from a one to a zero, or vice versa. The probability of one such

error occurring for an individual bit in a given transmission is very small, but as the size

of the transmission increases, so does the probability of a bit flip occurring somewhere in

the transmission. Detecting and/or correcting these bit flips is the goal of every error

detection and correction code.

With both types of coding, extra bits are added to the end of a block of data for

transmission. Before the data is sent over the communication line, these bits are encoded

at the sender using some agreed upon algorithm. When the data block arrives at the

receiver, the extra bits may be examined using another algorithm to check if some form

of data corruption took place in the transmission. Figure 1 below shows a basic block

diagram for the functionality of the encoder and error detector circuits at the sending and

receiving systems.

Figure 1 – Encoding and decoding of an error detection/correction code.

Encoding

Circuit

Error

Detection/

Correction

Circuit

1

0

1

0

1

0

1

0

Communication

Channel

Output

Data

Error Signal

Laboratory Experiment 4-2

There are two schools of thought when it comes to error detection/correction codes.

The first uses the extra bits attached to the data message to simply detect if an error

occurred in the transmission. These codes are called error detection codes, because if an

error is found in the transmission, the only way to get the correct data is to request a

retransmission from the data source. One simple error detection code is the even or odd

parity code. An even parity uses the XOR of all the bits in the data being sent to generate

a parity bit. If the number of ones in the data being sent is even, the parity bit will be

zero, however, if the number of ones in the data is odd, the parity bit will be one. An even

parity function adds a one to the end of the data being sent if it is required to make the

total number of ones sent an even number. An odd parity function works similarly,

however, a one is added to the end of the data being transmitted if it is necessary to make

the total number of transmitted ones odd. When the transmission is received, the total

number of ones that have been received may be checked to see if it is an even or odd

number. For an even parity, if an odd number of ones are received, something went

wrong during the data transmission.

Since parity functions, such as the ones described above, rely on checking if the

number of ones received is even or odd, multiple bit flips may go unnoticed. For instance,

if a zero is changed to a one and a one is also changed to a zero in the same transmission,

the error will go undetected, as the overall number of ones remains unchanged. Similarly,

adding or removing ones in multiples of two will also not be detected by this code. For

this reason, more complex error detection codes have been developed, such as the Cyclic

Redundancy Check (CRC), which can detect multi-bit errors, but requires more than a

single bit to be added for each transmission.

When it comes to error detection/correction codes, the other school of thought is why

stop at simply detecting an error when it occurs. It would be ideal to not only detect an

error, but also to fix the error at the receiver, so as not to require retransmission of the

data that was just received. These error-correcting codes also use extra bits added to the

end of a transmission that are encoded based upon the data being sent, however, the

encoding of these bits is a little more complex and allows for the locations of some types

of errors to be determined so that they may be corrected.

One such error-correcting code is Hamming Code, which uses parity bits interspersed

throughout the data being transmitted to detect all 1-bit errors. Whereas, 1-bit errors

could be detected with a single bit using a simple parity function, in order to correct the

errors, more bits are required. For an N-bit message, M parity bits will be required, such

that M is given by the following formula:

 ⌈ ⌉
Equation 1

By adding M bits to the transmission, there are N + M possible ways to get a single bit

error, and there is one way to get no error at all. The number of parity bits used must be

able to represent this number of error/no error conditions; hence, M can be determined by

the ceiling of the log function given in Equation 1. When the message is received, the

parity bits may be used to calculate the location of a bit flip, if one occurred during the

transmission.

When using Hamming Code, each bit position in the transmitted data (including all

the parity bits) is assigned a decimal value, from one onward, for the entire length of the

Laboratory Experiment 4-3

message. The parity bits are placed at locations corresponding to powers of two in the

transmission. Each parity bit is then calculated as a standard even parity of a subset of the

total transmission data. When the data is received, a standard even parity error detection

circuit may then be used for the appropriate data elements and the parity bit itself to

check if an error occurred in the transmission.

For example, consider a data transmission size of 8-bits. According to Equation 1

above, the number of parity bits required for the Hamming Code is four. The placement

of the data bits (Di) and the parity bits (Pi) in the resulting 12-bit Hamming Code would

then be as follows:

Bit Position B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Coded Data P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8

The binary bit position of each parity bit will have a one in only a single location.

Each parity bit is then calculated based upon the bits in the message that also have a one

in the same location as the parity bit. For instance, parity bit P1 would be calculated based

upon the message bit locations 3, 5, 7, 9, and 11. The following logic equations may be

used to calculate the values of each of the parity bits:

When all 12 bits of the transmission are received, the message must be checked for

errors. This can be done through the generation of four check bits obtained using the

equations shown above. Consider this, by XOR’ing both sides of each equation shown

above with the value on the left side of the equal sign, the parity bit is added to the

formula on the right, and the left side is reduced to zero. Therefore, when no transmission

errors occur, all the results of these new functions will be zero. However, if an error

occurs in one of the bit locations of the transmission, ones will be generated by each of

the functions containing that bit location. The number that results from calculating all the

check bits in this manner indicates the location of any single bit flip in the transmission.

In summary, the computation of the check bits may be done according to the following

formulas:

Laboratory Experiment 4-4

Remember when the check bit result is C8C4C2C1 = 0000, this means that no error

occurred in the transmission. However, when an error has occurred, the resulting check

bit number will contain the location of the bit flip so that it may be corrected.

3. Preliminary Design

In this laboratory experiment, you will design and implement Hamming Code circuits

for both four and eight bits. The eight-bit Hamming Code is discussed in detail in the

Background section of this laboratory. The four-bit Hamming Code uses the following bit

positioning:

Bit Position B1 B2 B3 B4 B5 B6 B7

Coded Data P1 P2 D1 P4 D2 D3 D4

The parity bits may be calculated using the following formulas:

The check bits may be calculated using the following formulas:

Each Hamming Code circuit will consist of three parts. The first is the parity

generator circuit that takes in the data bits you provide and calculates the appropriate

parity bits to be transmitted. In the receiving side of the transmission, you will design a

check bit generator circuit, as well as an error corrector circuit that uses the check bit

number to correct any single bit errors. Figure 2 below shows a block diagram of the

circuit elements and interconnections required to achieve error detection and correction

using Hamming Code.

Laboratory Experiment 4-5

Figure 2 – Block diagram for the four-bit Hamming Code circuit.

Before coming to lab, you should:

1. Design an implementation of the four-bit Hamming Code parity generator circuit

shown in Figure 2 above using standard TTL logic components. Draw a schematic

diagram of your implementation, including pin numbers and package reference

designators, and hand this in at the beginning of the laboratory. How many individual

packages are required for your design?

2. Compose a VHDL module that will achieve the four-bit parity generation

functionality you designed into the circuit in Part 1 above. Hand in a printout of this

file at the beginning of the laboratory.

3. Calculate an estimate for the number of individual packages that would be required to

implement the eight-bit parity generation functionality using standard TTL logic

components. Due to the size of this circuit, you do not need to actually draw the

schematic.

4. Compose a VHDL module that will achieve the eight-bit parity generation

functionality previously discussed in the Background section of this laboratory. Hand

in a printout of this file at the beginning of the laboratory.

5. Using standard TTL logic components, design an implementation of the four-bit

Hamming Code check bit generator circuit shown in Figure 2 above. Draw a

schematic diagram of your implementation, including pin numbers and package

reference designators, and hand this in at the beginning of the laboratory. How many

individual packages are required for your design?

6. Compose a VHDL module that will achieve the four-bit check bit generation

functionality. Hand in a printout of this file at the beginning of the laboratory.

7. Calculate an estimate for the number of individual packages that would be required to

implement the eight-bit check bit generation functionality using standard TTL logic

Input

Data

Parity Bit

Generator

D1

D2

D3

D4

D1

D2

D3

D4

P1

P2

P4

Check Bit

Generator

D1

D2

D3

D4

P1

P2

P4

C4

D2

D3

D4

C1

C2

D1

Error

Corrector

C4

D2

D3

D4

C1

C2

D1
DC2

DC3

DC4

DC1
Corrected

Output

Data

Transmitting Side Receiving Side

Laboratory Experiment 4-6

components. Again, due to the size of this circuit, you do not need to actually draw

the schematic.

8. Compose a VHDL module that will achieve the eight-bit check bit generation

functionality previously discussed in the Background section of this laboratory. Hand

in a printout of this file at the beginning of the laboratory.

9. Design a circuit that will implement the four-bit error correction functionality shown

in Figure 2 above. You do not need to correct errors in the parity bits of the message.

You may design this circuit using standard TTL logic components, or you may

implement it using a VHDL code module. If you use standard TTL components, you

may wish to use a decoder circuit to get a single output from the check bit number,

and you may then use XOR gates as selectable inverters. If you decide to use standard

TTL logic components for your circuit, draw a schematic diagram including pin

numbers and package reference designators, and hand this in at the beginning of the

laboratory. If you decide to use a VHDL module for your circuit, hand in a printout of

your code at the beginning of the laboratory.

10. Design a circuit that will implement the eight-bit error correction functionality for the

8-bit Hamming Code. Again, you do not need to correct errors in the parity bits of the

message. You may use either standard TTL logic components or a VHDL module to

implement your design, but because of its size, a VHDL module is recommended.

Hand in a copy of your design at the beginning of the laboratory.

4. In the Lab

 In this laboratory, the Spartan-3E Starter Kit board will be used to implement and test

both the four and eight-bit Hamming Code circuits that you developed in the pre-

laboratory exercises.

4.1 Four-Bit Hamming Code

1. Simulate the VHDL code module corresponding to the four-bit parity generator

circuit. Verify its functionality before proceeding to the next step in the laboratory

procedure.

2. Compile the four-bit parity generator module and program it to your Spartan-3E

Starter Kit board for physical testing. When you are sure that the functionality of your

circuit is correct, show your lab instructor its behavior.

3. Simulate the VHDL code module corresponding to the four-bit check bit generator

circuit. Verify its functionality before proceeding to the next step in the laboratory

procedure.

4. Compile the four-bit check generator module and program it to your Spartan-3E

Starter Kit board for physical testing. Calculate the correct transmission sequence for

Laboratory Experiment 4-7

a four-bit data block of your choice and provide this to your circuit. The check bit

number that results should be zero. Now change a single bit in the data you are

feeding into the circuit. The resulting check bit number should reflect the number of

the bit that you altered. When you are sure that the functionality of your circuit is

correct, show your lab instructor its behavior.

5. Build or simulate the four-bit error corrector circuit and verify its functionality.

Connect all three blocks of the four-bit Hamming Code circuit together on the

Spartan-3E Starter Kit board and ensure that they function properly. Fully test the

functionality of your circuit by purposely inserting errors into the transmission

between the parity generator and the check bit generator blocks. When you are sure

that your circuit functions correctly, show your lab instructor its operation.

4.2 Eight-Bit Hamming Code

6. Simulate the VHDL code module corresponding to the eight-bit parity generator

circuit and verify its functionality.

7. Simulate the VHDL code module corresponding to the eight-bit check bit generator

circuit and verify its functionality.

8. Build or simulate the eight-bit error corrector circuit and verify its functionality.

Connect all three blocks of the eight-bit Hamming Code circuit together on the

Spartan-3E Starter Kit board and ensure that they function properly. Due to the size

of the data message being transmitted, you need only display the final corrected

version of the eight bit data on the I/O board LEDs. Fully test the functionality of

your circuit by purposely inserting errors into the transmission between the parity

generator and the check bit generator blocks. When you are sure that your circuit

functions correctly, show your lab instructor its operation.

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 5-1

Laboratory Experiment 5:

Barrel Shifters

1. Purpose

 In this lab, you will be introduced to the concepts of data shifting circuits by

designing and implementing a barrel shifter, using the Spartan-3E Starter Kit board.

2. Background

2.1 Barrel Shifter Circuits

 Data shifting circuits are of critical importance in CPU design. They are useful for

bit-mask manipulation and various other operations that would be cumbersome using

other mathematical functions. When designing and building a barrel shifter, there are

several functional specifications that must be considered. For instance, will the shifter

move data to the left or to the right? More often than not, in order to allow the shifter

circuit to be general purpose, it should support both left and right shifts of the data with

which it is supplied, based upon some selection input setting. Another issue that must be

considered when designing a shifter is what type of shift operation will be performed.

 When a logical shift circuit moves data left or right, the data shifted out of the range

of the data storage element is dropped. In addition, the empty space created in the storage

element with each bit shift is filled with a pre-determined, or runtime specified, bit value

that is typically zero. This type of operation is most often useful for bit-mask

manipulations.

 A circular shift circuit behaves similarly to the logical shift circuit; however, bits that

are shifted out of one end of the storage element are fed back into the other end as inputs.

This allows all of the original data to be kept, even though it is moved around. Circular

shift functionality is useful for certain bit manipulations that may or may not use masks.

 Finally, arithmetic shift functionality is set up to achieve very low cost

multiplications or divisions by powers of two. To achieve this, a left shift operation will

input zeros into the newly vacated LSBs of the data storage element. A right shift

operation, on the other hand, will replicate the sign bit of the original data into the MSBs

of the data storage element that are emptied during the shift operation. This is the type of

shifting circuit that will be designed and implemented in this laboratory.

 A final consideration when designing shifting circuits is the amount of shift the

circuit will support. A single bit shifting circuit, while simple to design, will not be

terribly useful, as multi-bit shift operations will require the data to be fed through the

shifter several times. A shifter that will handle a variety of different shift amounts will be

more complicated to design, but will ultimately be more useful.

 In this laboratory, you will design an 8-bit arithmetic barrel shifter. This circuit will

implement the arithmetic shift functionality and will be able to support a shift amount of

anywhere from zero to seven bits. The full functionality of this circuit may be achieved

using many two-input multiplexer circuits, whose inputs and control signals are

connected in a specific manner. Recall that a two-input multiplexer will have two data

Laboratory Experiment 5-2

inputs and one select line. Depending on the value of the select line, the data fed to its

single output will be one or the other of the data input values. The functionality of the

multiplexer is shown in the following truth table:

A Input B Input Sel Input Output

A B 0 A

A B 1 B

Table 1 – The truth table for a two-input multiplexer.

 The following diagram shows how many of these two-input multiplexers may be tied

together to create an 8-bit arithmetic barrel shifter circuit. The circuit has eight inputs and

eight outputs for taking in and outputting data. There are also three shift inputs used to

specify the amount of shift to be performed. Finally, a direction input is used to specify

the direction of the shift, zero for left and one for right.

Figure 1 – Block diagram for the 8-bit arithmetic barrel shifter.

Laboratory Experiment 5-3

3. Preliminary Design

 In this laboratory, you will design and implement an 8-bit arithmetic barrel shifter

circuit using the block diagram provided in Figure 1 of the Background section of this

laboratory.

Before coming to lab, you should:

1. Design a VHDL module to implement the two-input multiplexer functionality. This

module will form the basis of the entire shifter circuit and, therefore, it is critical that

it functions properly.

2. Using the two-input multiplexer module that you designed in Part 1 above, connect

56 of them together as shown in Figure 1 to implement the arithmetic barrel shifter

functionality. In the block diagram provided, the lower input of each multiplexer

block corresponds to the input that is passed through the device for a select input of

zero.

4. In the Lab

1. Enter your design for the 8-bit arithmetic barrel shifter circuit into the Xilinx ISE

development environment.

2. Be sure to test the functionality of your multiplexer module before testing the

functionality of your full shifter circuit. If you have made an error in the construction

of the multiplexer, it may not be obvious when your shifter circuit does not function

properly.

3. After ensuring that your multiplexer circuit functions appropriately, test your

implementation of the complete barrel shifter. Be sure to test for all of the different

direction and shift amount combinations, as the 8-bit input to the circuit is of no real

importance.

4. When you are sure that your barrel shifter circuit functions as you expect, program it

to your Spartan-3E Starter Kit board for physical testing. Due to the number of inputs

in this design, it may be somewhat difficult to use only the switches and pushbuttons

on the Spartan-3E Starter Kit board to fully test your design. Make sure to take

advantage of the additional switches provided by the PMOD-SWITCH units. Verify

the functionality of your circuit and show the lab instructor your shifter’s operation.

Laboratory Experiment 5-4

5. Post-Lab

 Include a solution to the following question in your laboratory write-up to be turned

in next week.

1. Using the block diagram shown in Figure 1 of the Background section of this

laboratory as a road-map, design a block diagram that would implement the circular

shift functionality for both right and left shift operations.

6. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

3. Weste, Neil H. E.; and Eshraghian, Kamran. (1993). Principles of CMOS Design: A

Systems Perspective Second Edition. Massachusetts: Addison-Wesley Publishing

Company.

Laboratory Experiment 6-1

Laboratory Experiment 6:

High-Speed Adder/Subtractor

1. Purpose

 In this lab, you will be introduced to high-speed computer arithmetic by designing

and implementing a look-ahead carry generation adder/subtractor circuit that may be

downloaded to the Spartan-3E Starter Kit board.

2. Background

2.1 Look-Ahead Carry Generator Adders

 While the ripple-carry adder circuits that you implemented in an earlier laboratory

experiment are quite simple and very capable, they do have a limitation. Due to the way

the single-bit adder blocks are cascaded together, in order for the most significant bit of

the result to be calculated, all of the earlier bits must have already been calculated. For

instance, in order for the second bit of the result to be calculated, the first bit must be

calculated first. This phenomenon is due to the fact that the carry-out value of earlier bits

is required in order for the current result to be calculated correctly. For calculations

requiring very few bits, the additional delay required for calculating all the bits

sequentially is insignificant. However, when the data being manipulated grows to a more

useful size of 16, 32, or 64 bits, the delay to calculate the final result becomes significant,

especially for high-speed computing applications. If a simple ripple-carry adder system

were used in a high-speed processor, either addition operations would be very expensive,

or, worse yet, the maximum clock rate of the processor may have to be limited.

 Fortunately, research has developed look-ahead carry generation circuitry that allows

all of the bits for the result to be calculated simultaneously based upon the initial carry in

value. The basis for this circuitry involves some Boolean manipulations using the output

functions generated by the truth table for the full-adder circuit.

Ai Bi Ci Si Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 1 – The truth table for a single-bit full-adder.

 The subscripts in the truth table above refer to the bit number of the current output. In

other words, using the i
th

 bits of each input operand, and the i
th

 carry (carry-out of

previous bit operation), the i
th

 sum value can be generated, along with the next carry

Laboratory Experiment 6-2

value. Essentially, this is just a change in the naming of the inputs and outputs presented

in the truth table of the ripple-carry adder laboratory. From Table 1, the following logic

functions can be developed for the outputs of the adder circuit block:

The equation for the Ci+1 output may then be re-written as follows:

 It is already clear that the carry for the i+1 stage of the adder is defined recursively in

terms of the carry from stage i with some additional logic surrounding it. From the

equation above, some supplementary functions may be defined, allowing the Ci+1

function to be re-written in a more efficient form. The results of this simplification are as

follows:

 This simple equation for the carry out from an adder block is actually quite powerful.

By recursively expanding the equation for Ci+1 through replacing all the previous Ci’s

with their equivalent formulas, the following equations for each carry output can be

created:

Laboratory Experiment 6-3

Remember, the C0 value required by each of these equations is the initial carry in value

presented to the adder circuit from an external source. Therefore, all the carry values may

be simultaneously calculated after a single gate delay that is required to produce the Gi

and Pi functions for each bit pair of the operands. The high-speed adder circuit may then

be constructed out of blocks with the following inputs and outputs:

Figure 1 – Component block for the look-ahead carry adder circuit.

 It should be noted, however, that nothing in life is free. While the look-ahead carry

generation adder circuit does eliminate the delay incurred by cascading full-adders

together, this speed comes at a cost of additional logic that must be implemented external

to the blocks shown in Figure 1. This logic must implement all of the carry functions that

are required for the circuit to function with as many bits as are included in the operands.

The overall structure for the look-ahead carry generation adder circuit is shown in the

following figure:

Figure 2 – Block diagram for the look-ahead carry generation adder circuit.

 Finally, just as with the ripple-carry adder circuit, the look-ahead carry generation

adder circuit may be made into an adder/subtractor by inserting XOR gates in the path of

each of the B operand bits. These gates may be used as selectable inverters, just as

Σ

Ai Bi Ci

Si
Gi

Pi

Σ
Ai Bi Ci

Si Gi Pi

Σ
Ai Bi Ci

Si Gi Pi

B1 B0 A1 A0

Look-Ahead Carry Network

P0 G0 C1 P1 G1

S0 S1

C0 C0

COUT

Cn

Laboratory Experiment 6-4

before, so when C0 is zero, the circuit adds the two operands together, and when C0 is

one, the circuit subtracts B from A. If you do not recall how this process works, please

consult the laboratory dealing with the ripple-carry adder/subtractor earlier in this

manual.

3. Preliminary Design

 In this laboratory, you will design and implement a 4-bit look-ahead carry generation

adder/subtractor circuit using the principles discussed in the background section of this

laboratory. After designing and testing this circuit, you will then cascade two of them

together to create an 8-bit adder/subtractor. This circuit will be a hybrid of the ripple-

carry and look-ahead carry generation circuits, in that the four most significant and least

significant bits will be calculated using the look-ahead carry generation techniques, but in

between the two blocks, there will be some sequential overhead incurred due to the

cascading.

Before coming to lab, you should:

1. Design a VHDL module to implement the required functionality shown in Figure 1 of

the Background section of this laboratory. This module should also include the XOR

gate and all connections necessary for selectively inverting the B operand input. This

will allow your final circuit to be an adder/subtractor. In order to invert the B operand

bits as necessary, your module must include an input for the C0 value.

2. Using Figure 2 of the laboratory as a template, draw a block diagram for the four-bit

look-ahead carry adder/subtractor circuit. Since the block diagram provided only

implements an adder circuit, some additional connections are needed in your circuit.

In order to invert the B operand bits as necessary, each adder/subtractor module must

have a C0 input, and the external C0 for the circuit must be provided to each module.

3. Using the VHDL module you created in (1) above, construct a VHDL version of the

four-bit look-ahead carry generation adder/subtractor, for which you developed a

block diagram in (2). Be sure to include all of the equations necessary to calculate

each of the necessary carry values, and feed the appropriate data to each of your adder

modules.

4. Draw a block diagram for cascading two of your 4-bit look-ahead carry

adder/subtractors together to make an 8-bit adder/subtractor. You do not need to

implement look-ahead carry generation functionality between the two modules.

5. Write a VHDL module that cascades two of your 4-bit look-ahead carry

adder/subtractor circuits together. In order to allow for the subtraction operation to

function properly, your second module will need an external input for C0 and your

first module will need an external output for C0. These may then be tied together to

allow the B operand bits to be appropriately inverted.

Laboratory Experiment 6-5

4. In the Lab

4.1 4-Bit Look-Ahead Carry Adder/Subtractor

1. Enter your design for the four-bit look-ahead carry adder/subtractor into the Xilinx

ISE development environment.

2. Simulate your design to ensure it functions properly in both the addition and

subtraction modes. If something is wrong in simulation, fix the problem and simulate

your design again. When you are satisfied that your design functions properly,

download it to the Spartan-3E Starter Kit board for testing.

3. When you are satisfied that your design functions properly, show the lab instructor

your working circuit before proceeding to the next section of this laboratory.

4.2 8-Bit Look-Ahead Carry Adder/Subtractor

4. Enter your design for the eight-bit look-ahead carry adder/subtractor into the Xilinx

ISE development environment.

5. Due to its size and the limited number of switches on the Spartan-3E

 Starter Kit board, you will only simulate your design for the eight-bit

adder/subtractor. Simulate several instances of addition and subtraction, and when

you are satisfied that your design functions as expected, show the lab instructor your

simulation results.

5. Post-Lab

 Include solutions to the following questions in your laboratory write-up to be turned

in next week.

1. Design a full eight-bit look-ahead carry generation adder circuit. You only need to

develop the necessary functions to implement the design, and draw a block diagram

showing how the entire design fits together.

2. Design a circuit to determine if an overflow occurred during an addition or

subtraction. Your circuit should utilize the operation being done, as well as the signs

of each of the operands and the result to determine if an overflow occurred.

6. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 7-1

Laboratory Experiment 7:

Sequential Logic Design and Finite State Machines

1. Purpose

 In this lab, you will learn the skills required to design and program sequential circuits

that may be uploaded to the Spartan-3E Starter Kit board. Students will design and build

a finite state machine both through utilizing D flip-flop elements and entering the state

diagram directly into the Xilinx ISE development package.

2. Background

2.1 State Diagrams and State Machines

State diagrams are often used for sequential logic design because they provide a

simple, visual method to see the overall functionality of the system as a whole. Each state

in a finite state machine (FSM) is used to achieve some desired functionality, or is used

as a synchronization point between functional state traversals. For any given FSM, a state

diagram may be composed showing the next state and associated outputs of the system

based upon the current state and inputs presented to the system.

In all state diagrams, the next states that are possible given a current state may be

determined by following the transition arrows. Some transitions are taken only when a

certain input combination is presented, while others may be taken all the time. The latter

type of transition occurs unconditionally at the next clock cycle.

The outputs from the state machine also come in two varieties. In the first, the outputs

from the system are only a function of the current state in which the system resides. As

long as the system resides in a given state, these unconditional outputs will always have

the same value. This type of output may be included in a state diagram by labeling the

state bubble with each output and its associated value. When an FSM contains only

unconditional outputs, it is called a Moore Machine. Figure 1(a) shows a Moore Machine

implementation of a two-bit binary counter with a carry output (C) signal. Before the

counter cycles back to zero, it asserts the carry output to allow for potential cascading of

multiple counters together.

 Whereas, some outputs depend only on the state in which the FSM resides, others

may depend upon the input values presented while the system is in a given state. These

conditional outputs may not be placed directly in the state bubble in a state diagram

because the output from a given state may be different depending on the inputs presented.

To list this type of output in a state diagram, a transition arrow out of a state is labeled

with an input value and the associated output value it should produce. A transition must

be added coming out of a given state for each combination of input conditions that may

arise. When an FSM contains only conditional outputs, it is called a Mealy Machine.

Figure 1(b) shows a Mealy Machine implementation of a two-bit counter with a carry

output and enable input. Depending on the state of the enable input, the FSM will either

progress to the next state with the next clock tick or it will stay where it is. Similarly, the

Laboratory Experiment 7-2

state of the carry output also depends on whether or not the system is enabled for

counting.

Figure 1 – Moore machine and Mealy machine implementations of the two-bit counter.

In Figure 1, each state in the diagram is labeled with a bit pattern corresponding to the

output values of the two flip-flops required to implement the design. More often than not,

however, state diagrams are composed in which the states are given symbolic names.

These names are often chosen to reflect the functionality that is achieved within a given

state, making it easier for an individual to discern the full functionality of the system.

Figure 2 shows the same state diagram as was presented in Figure 1(b), but the binary

state names are replaced with the names S0, S1, S2, and S3.

Figure 2 – State diagram with symbolic state names.

 When a diagram, such as the one shown in Figure 2, is to be physically implemented,

the symbolic state names must be assigned unique binary codes. In the state assignment

process, each symbolic state name is associated with a binary state code that will later

correspond to the data stored in the flip-flops of the system at any given time slice. The

00

C = 0

01

C = 0

11

C = 1

10

C = 0

(a) Simple Counter

(Moore Machine)

00

(b) Counter with Enable

(Mealy Machine)

01

11 10

EN / C = 0

EN / C = 0

EN / C = 0

EN / C = 1

EN’ / C = 0

EN’ / C = 0

EN’ / C = 0

EN’ / C = 0

S0 S1

S3 S2

EN / C = 0

EN / C = 0

EN / C = 0

EN / C = 1

EN’ / C = 0

EN’ / C = 0

EN’ / C = 0

EN’ / C = 0

Laboratory Experiment 7-3

current state of the system will then be determined by this flip-flop data storage.

Depending on the state code selected for each state in the FSM, different implementation

costs can be incurred. For the FSMs developed in this laboratory, however, these

differing implementation costs based upon state code assignment will not be critical

enough to be of concern.

2.2 Implementing Finite State Machines

 Implementing a physical manifestation of a state diagram is fairly simple, and may be

done through the following steps:

1. Develop a state transition table from the supplied state diagram. This is a kind of

truth table for the state machine, showing the possible input combinations for a

given current state along with the corresponding next state, and output values that

will result. Figure 3(a) shows an example of a state transition table that was

developed for the state diagram shown in Figure 2.

2. Decide upon the number of flip-flops that will be required to implement the

design. This can be found by the number of bits that are required to list the binary

value for the number of states in the system. This is because in order to represent

N system states, at least N distinct combinations of flip-flop values must be

possible, requiring log2 N distinct flip-flops. After choosing the number of flip-

flops to be used, assign each state a unique binary number with the same number

of bits as flip-flops in the system. A new version of the state transition table may

then be generated containing these state code assignments. An example of a state

code assignment for the state diagram in Figure 2 is shown in Figure 3(b).

3. Choose the type of flip-flops that you will use to implement your design. More

complex flip-flops, like JK flip-flops, may reduce the amount of external logic

needed to control the flip-flops themselves. However, since D flip-flops are easier

to use, they will be utilized in this laboratory. Remember, with a D flip-flop, the

value stored at a clock cycle is the same as the input value into the flip-flop at the

rising edge of the clock.

4. Compose an excitation table for the system. This table will contain the necessary

inputs for each flip-flop that will produce the correct next state at the next clock

cycle. These required input values may then be treated like any other circuit

output and logic functions may be developed to pass the correct input values to

each flip-flop based on the current state and system inputs. Remember, for D flip-

flops, this table is equivalent to the state transition table created in Step 2. For

more complex flip-flops, a new table must be generated for the required flip-flop

input values.

5. Derive logic functions for each flip-flop input, and for each system output signal

based upon the excitation table you generated in Step 4. Remember, when using

D flip-flops, the excitation table will be similar to the one shown in Figure 3(b).

Laboratory Experiment 7-4

IN
Present

State

Next

State
OUT IN Q0 Q1 D0 D1 OUT

0 S0 S0 0 0 0 0 0 0 0

1 S0 S1 0 1 0 0 0 1 0

0 S1 S1 0 0 0 1 0 1 0

1 S1 S2 0 1 0 1 1 0 0

0 S2 S2 0 0 1 0 1 0 0

1 S2 S3 0 1 1 0 1 1 0

0 S3 S3 0 0 1 1 1 1 0

1 S3 S0 1 1 1 1 0 0 1

(a) State Transition Table (b) Excitation Table

Figure 3 – Tables required when performing sequential logic design.

2.3 The Turn Signal FSM

Now that the basics of sequential logic design have been discussed, the FSM that will

be designed in this laboratory may be introduced. Figure 4 below shows a block diagram

of the system that will be designed, and how its outputs may be mapped to a real-world

application. The back of a car has three lights, one on each side and one in the center.

These lights will be used for turn signals, as well as for hazard flashers, and therefore,

each will be tied to an output of the FSM. In addition, the FSM has three inputs

corresponding to the right and left turn signal selections, as well as a system clock.

Figure 4 – Block diagram and real world mapping for the Turn Signal FSM.

When neither of the turn signal control inputs is asserted high, none of the lights for

the car should glow, and the system should stay in this idle state. If a left turn signal is

requested by asserting the left input while keeping the right input low, the left light of the

car should flash on and off with the same frequency as the system clock signal. Similarly,

if a right turn signal is requested by asserting the right input while keeping the left input

low, the right light of the car should flash on and off with the same frequency as the

system clock signal. Finally, asserting both the right and left inputs simultaneously

indicates a hazard condition. In this situation, the left and right lights should both be lit

while the hazard light is not for one clock cycle. Then the hazard light should light while

the others turn off for the next clock cycle. Finally, all lights should turn off for one

additional clock cycle. All of these output conditions should repeat for as long as the

input requirements are satisfied.

FSM

L

R

CLK

LL

HL

RL

LL HL RL

Laboratory Experiment 7-5

A state diagram for this system is shown in Figure 5 below. Each state in the diagram

is given a symbolic state name to make it easier to determine what is going on for each

combination of input conditions. In addition, this system may be implemented as a Moore

Machine since the output light pattern depends only on the current state of the system.

The binary number shown in each state of Figure 5 may be used, not only for the flip-flop

values indicating the current system state, but may also act as the system outputs tied

directly to the three lights on the car. This method of state assignment is called “output

coded” state assignment, because the system state may double for the system outputs

directly. This type of state assignment only works for Moore Machines because the

outputs of the system only rely upon the current system state. Transitions in the diagram

are either labeled with the input conditions that must be true for the transition to be taken,

or are labeled with a one. Transitions labeled with a 1 are always taken at the next clock

cycle, regardless of the inputs into the system.

Figure 5 – State diagram for the Turn Signal FSM.

3. Preliminary Design

 The preliminary design for this laboratory consists of creating an implementation for

the Turn Signal FSM. The counter, which was discussed as part of the background

section of this laboratory, was only used to discuss the concepts of sequential logic

design and will not be implemented in the laboratory.

LSIG

100

IDLE

000

RSIG

001

H1

101

H2

010

L * R

L * R’

L’ * R

L’ * R’

1

1

1

1

Laboratory Experiment 7-6

Before coming to lab, you should:

1. Generate a state transition table for the Turn Signal FSM using the state diagram

provided in Figure 5.

2. As can be seen from the state code assignments in the state diagram, this circuit will

require the use of three flip-flops. For ease, this circuit will be implemented using D

flip-flops, therefore, the flip-flop inputs may be named D0, D1, and D2, and the

outputs may be named Q0, Q1, and Q2. With this in mind, write an excitation table

for the Turn Signal FSM including the input signals L and R, as well as the flip-flop

inputs and outputs. Keep in mind that each car taillight may be tied to one of the flip-

flop outputs in the final design.

3. Generate the excitation logic functions for each flip-flop in the Turn Signal FSM.

These functions should use the system inputs and the current state to derive the input

signal value to each flip-flop that will be stored at the next clock cycle. Bring these

functions and the state diagram for the FSM to the laboratory for implementation on

the Spartan-3E Starter Kit board.

4. In the Lab

 The Xilinx ISE development environment allows for sequential circuits to be entered

in several different formats, depending on the nature of the problem at hand. One simple

entry method uses standard VHDL code and the modular design techniques with which

you should now be familiar. In this method, a VHDL module must first be created to

implement the functionality of a flip-flop of the desired type. This module may then be

used in conjunction with logic equations for the inputs and outputs, just as though a

circuit were being made out of physical components.

 While this method may be used for any situation that you will encounter, for large

problems, it may be tedious or undesirable to reduce a state diagram to this level for

implementation. To accommodate this situation, the ISE development environment

allows sequential designs to be directly entered at the state diagram level. The VHDL

code to implement the state diagram is then automatically generated for you. This

laboratory procedure will discuss both ways to enter the turn signal FSM design into the

development environment.

Sequential Logic Design Using Flip-Flops

1. The first part of this procedure is concerned with creating the D flip-flop module to

be used in the FSM implementation. To that end, create a new project in the ISE

Project Navigator and add a VHDL module file to it. The input ports for this module

should include a D input and a CLK input, and the outputs should include a Q output

and optionally a Q_L output for the inverse of Q.

2. The key to creating any flip-flop in VHDL is edge detection on the clock signal. Edge

detection can be achieved quite simply within a process you create in your VHDL

Laboratory Experiment 7-7

file. If you do not remember how to create a process, please see the laboratory

procedure for the BCD code conversion in this manual. Both the D and CLK input

signals will be used within the process, so note them accordingly in the process

declaration.

3. Edge detection is then quite simple and may be achieved with an IF statement within

your new process. The first condition that must be checked is the level of the CLK

signal. For a rising-edge triggered flip-flop (which we will use) the CLK should be

high in order for the flip-flop to trigger. This condition alone is not enough, however,

so an additional condition must also be checked. The IF statement must also check for

an event on the CLK input signal in order to achieve true edge-triggered functionality.

An event will be triggered on a given signal for a number of different reasons,

including a change from low-to-high or high-to-low. To check for an event on a

signal, enter the signal name followed by a single quote and the word “event,” as

follows:

signal_name’event

 The following code illustrates the proper format for an edge-detection IF statement,

and in fact, is the code required to produce an edge-triggered D flip-flop:

 process (CLK, D)

 begin

 if CLK = '1' and CLK'event then

 Q <= D;

 Q_L <= not (D);

 end if;

 end process;

4. When you finish entering your flip-flop VHDL file, synthesize your code to eliminate

any syntax errors and simulate your design to ensure that it works appropriately.

5. When it comes to sequential logic design, the only other issue that must be dealt with

is the clock input when assigning pin numbers. Pin C9, is mapped to a 50 MHz

crystal oscillator on the board. This crystal oscillator is too fast to be useful in its raw

state. To remedy this, Appendix B of this laboratory manual contains code modules

for a 1 Hz clock generator and a selectable frequency clock generator. By adding one

of these modules to your design and utilizing the 50 MHz crystal oscillator signal,

you will be able to generate a slower clock frequency for your sequential designs.

Assign pin numbers to all the inputs and outputs of the D flip-flop, and program it to

your test board to ensure that it works as expected.

6. THIS STEP IS CRITICAL. After testing your D flip-flop on the Spartan-3E

 Starter Kit board, REMOVE the clock divider module that you added to it to produce

the slower clock frequency. You should save the D flip-flop version that takes in a

clock signal from the outside and uses that directly for its edge-detection. This is

important when it comes to simulating higher-level designs that use the flip-flop you

Laboratory Experiment 7-8

just generated. If you were to leave in the clock rate division, when a design that uses

this flip-flop is simulated, upwards of 50,000,000 clock cycles would have to go by

before you would see the states changing!

7. When you have verified that your D flip-flop design works appropriately, use this

module in conjunction with the logic equations you developed for the turn signal

FSM to write a VHDL file that achieves the required functionality. Create a new

project and enter this file for testing. Be sure to tie the clock input for the FSM to the

clock inputs of all the flip-flop elements you place in your design. At this point, do

not include any of the clock divider modules in your FSM design. One of these

modules may be included after your design is simulated and before it is programmed

to the Spartan-3E Starter Kit board. In order to use the output values of the flip-flops

as inputs to logic equations, you will need to create internal signals that you can copy

the values into. These signals can then be used in logic equations to be fed into the

inputs of the flip-flops. Also, do not forget to add the VHDL file for the D flip-flop

you generated to this new project, so that the code will be accessible.

8. Synthesize the Turn Signal FSM design, and simulate it to ensure that it functions as

you expect. Remember, when it comes to assigning pin numbers to the input and

output ports of your turn signal FSM, be sure to assign the clock port to the pin

discussed earlier.

9. When you are sure that your design functions as you expect, you may add one of the

clock divider modules to the design and use its output as the clock inputs to your flip-

flops. You will need to re-compile your design and generate the programming file for

download. When you have completed your design, download it to your Spartan-3E

Starter Kit board and show its functionality to your lab instructor.

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 8-1

Laboratory Experiment 8:

Traffic Light Controller

1. Purpose

 Typically, traffic light control is a field dominated by micro-controllers. Very

complex timing of these lights can be handled with some simple software running on off-

the-shelf products. For very simple traffic lights, however, it may be possible to

implement their timing functionality with simple sequential logic circuits. In this lab, you

will design and implement two traffic light controller circuits using the Spartan-3E

Starter Kit board.

2. Background

 For complex, modern traffic lights, often, the use of a micro-controller to handle all

the timing functionality of the light is essential. Coordinating the three main signal lamps

for each direction, left and right turn arrows, and walk and don’t walk signals is not an

easy task. It may also be beneficial to alter the timing of the light based upon traffic

sensors and time of day. Handling all this functionality is simply too daunting a task for

simple logic circuits. In addition, the programming capabilities of a micro-controller

allow the timing to be altered relatively easily when necessary. With this said, there are

some simple applications in which the cost of developing a micro-controller system and

its corresponding software would simply not be justified. For these situations, a simple

sequential logic circuit may be constructed to provide all the required functionality.

2.1 Simple Two-Way Intersection

 The first circuit that will be designed for this laboratory experiment is one for

controlling a traffic signal at a very simple intersection. Consider an intersection of a

north/south road and an east/west road, as shown in Figure 1 below.

Figure 1 – Illustration of the intersection for the first traffic light controller.

 North

South

East West

Traffic
Signals

Laboratory Experiment 8-2

 For this first, very simple problem, each traffic signal only has three lamps: green for

proceed, yellow for changing, and red for stop. A timer alone governs the changing of

these lights and no additional sensor information is obtained regarding traffic flow or any

other operating conditions. In addition, consider that the north/south road is busier than

the east/west road; therefore, it is desirable to give longer green lights to the north/south

road. The north/south road may be given ten time-unit green lights, while the east/west

road is only given five time-unit green lights (for the purposes of this laboratory, a time-

unit may be assumed to be the length of one clock cycle of a chosen frequency). Just as

with a typical traffic light, when one direction is given a green light, the other direction

must be given a red light. For the transition from green to red, a yellow light is given to

the directions that had a green light previously, for a duration of one time-unit. Finally,

when the yellow light transitions to red, all four directions are provided with a red light

for one time-unit, allowing for a margin of safety in the event someone decides to run the

new red light. This functionality is summarized in the following flowchart.

Figure 2 – Flowchart for the simple traffic light controller.

 A

S0

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 10
No

Yes

S1

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 1
No

Yes

S2

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 1
No

Yes

B

B

S3

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 5
No

Yes

C

S4

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 1
No

Yes

C

S5

N/S E /W

R:

Y:

G:

Reset Timer

Timer = 1
No

Yes

A

Laboratory Experiment 8-3

2.2 Two-Way Intersection with Traffic Sensors

 For the second circuit to be developed in this laboratory experiment, consider that the

previous traffic light no longer satisfies the needs of the traffic patterns on these two

streets. If the traffic flow on the north/south street increases drastically while the traffic

on the east/west street remains very low, the timing that was provided in the previous

section could produce undesirable delays on the north/south road. If there are no cars

waiting for the red light on the east/west street, there is no reason to change the

north/south signal from green to red. When a car arrives at the east/west traffic light, the

same timing presented in the previous section may be initiated. In order to achieve this

functionality, automobile sensors are inserted at the intersection as shown in the

following figure.

Figure 3 – Illustration of the intersection with the automobile sensors added.

 The addition of the automobile sensors allows the traffic light controller to adapt to

changing traffic patterns. This will allow the north/south street to have an unrestricted

traffic flow in the event that no cars are waiting at either of the cross street traffic signals.

The functionality of these automobile sensors, in conjunction with the traffic light timing,

is summarized in the following flowchart.

 North

South

East West

Automobile

Sensors

Laboratory Experiment 8-4

Figure 4 – Flowchart for the traffic light controller including automobile sensors.

 A

S 0

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 1 0
N o

Y e s

S 1

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 1
N o

Y e s

S 2

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 1
N o

Y e s

B

B

S 3

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 5
N o

Y e s

C

S 4

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 1
N o

Y e s

C

S 5

N / S E / W

R :

Y :

G :

R e s e t T im e r

T im e r = 1
N o

Y e s

A

S e n s o r W e s t = F a l s e
& S e n s o r E a s t = F a l s e

Y e s

N o

S e n s o r W e s t = F a l s e
& S e n s o r E a s t = F a l s e

N o

Y e s

Laboratory Experiment 8-5

3. Preliminary Design

 In this laboratory, you will design and implement both of the traffic light controller

circuits presented in the Background section of this laboratory. In your implementation,

you may use either of the 50-MHz clock divider modules presented in Appendix B of this

laboratory manual. You may find it desirable to utilize the selectable frequency module,

as you will not be forced to wait for five and ten-second timing cycles to complete.

Before coming to lab, you should:

1. Design a VHDL implementation of the traffic light controller presented in

Background Section 2.1 of this laboratory experiment. Do not include a clock divider

module in your code yet, as you will need to simulate your design before

implementing it. In order to convert the flowchart provided into functional VHDL

code, you may find it helpful to first develop a state transition diagram encompassing

the functionality of the flowchart. This step is not necessary, however, and your

design may be developed directly from the flowchart itself. In addition, you will

probably find the use of variables in your VHDL code useful. Variables may be

declared within VHDL processes (like those used for IF statements) and use the

following syntax:

variable variable_name : type := initialization_value;

 Any variable declarations are placed between the process declaration statement and

the “begin” statement for the process. The variable type may be: integer, real, bit, or

any number of other more complex data types that will not be necessary for this

laboratory. When assigning a value to a variable, the “:=” assignment operator must

be used. Finally, standard mathematical operations, such as addition, subtraction,

multiplication, and division may be performed on variables, as they are treated in a

manner similar to C++ variables. For an example of simple variable use, consult the

clock divider code modules in Appendix B of this laboratory manual; both utilize

variables to store a count.

2. Design a VHDL implementation of the second traffic light controller presented in

Background Section 2.2 of this laboratory experiment. Again, do not include a clock

divider module in your design yet, as you will need to simulate it before

programming it to the Spartan-3E Starter Kit board.

Laboratory Experiment 8-6

4. In the Lab

4.1 Two-Way Intersection with No Sensors

1. Enter your design for the first two-way traffic controller into the Xilinx ISE

development environment.

2. Simulate your design to ensure the timing of the lights is appropriate and fits the

specifications of the flowchart in Background Section 2.1 of this laboratory

experiment. If your design does not simulate properly, correct all inconsistencies

before continuing to the next section of this laboratory procedure.

3. Include one of the 50-MHz clock divider modules from Appendix B of this laboratory

manual in your design, and connect its output to the clock signal of your traffic light

controller. Either clock divider module may be used with this design; however, the

selectable frequency module may make physical testing of your circuit less time

consuming.

4. Program the Spartan-3E Starter Kit board with your design and physically test your

circuit. When you have verified that your design functions properly, show the lab

instructor its behavior before moving on to the next step in this laboratory.

4.2 Two-Way Intersection with Sensors

4. Enter your design for the second two-way traffic controller into the Xilinx ISE

development environment.

5. Simulate your design to ensure the timing of the lights is appropriate and fits the

specifications of the flowchart in Background Section 2.2 of this laboratory

experiment. Be sure to simulate all combinations of sensor inputs. If either sensor or

both are triggered, the traffic light timing should be initiated. The only way for the

timing process to be halted is for both sensors to be turned off. If your design does not

simulate properly, correct all design problems before continuing on to the next

procedure in this laboratory.

6. Include one of the 50-MHz clock divider modules from Appendix B of this laboratory

manual in your design, and connect its output to the clock signal of your traffic light

controller.

7. Program the Spartan-3E Starter Kit board with your design and physically test your

circuit. When you have verified that your design functions properly, show the lab

instructor its behavior before completing this laboratory.

Laboratory Experiment 8-7

5. Post-Lab

 Include a solution to the following question in your laboratory write-up to be turned

in next week.

1. Design an implementation of the traffic light controller circuit without traffic sensors

using D flip-flops with asynchronous reset capabilities. In order to do this, it may be

beneficial to design a timer circuit based upon a shift register. After a reset, a signal

may be shifted through the shift register, and tap points may be included in the design

to provide a signal for each of the required timing events. Begin this design by

creating a schematic diagram for this timer, or a timer of your choosing, keeping in

mind that the clock frequency used is the same as the base time unit for the system.

Next, generate the state transition table, excitation table, and a schematic diagram for

your main controller circuit, obeying the flowchart in Figure 2 from the Background

section of this laboratory. After completing this, generate the output functions

controlling the traffic signals based upon the current state of your controller circuit.

You may simply develop the functions, and do not need to draw the schematic

diagrams representing them.

6. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 9-1

Laboratory Experiment 9:

Data Encryption Using LFSRs

1. Purpose

 This laboratory experiment will introduce some concepts of data encryption and

cryptography that may be implemented using an FPGA and the Spartan-3E Starter Kit

board. The student will then be given a set of encrypted ASCII text and will decrypt it

using the methods specified in this experiment.

2. Background

 First, it should be stated that the cryptography method presented in this lab is a very

simplified version of what is used in most secure data communications today. In general,

the more complex the encryption protocol, the harder it will be for an external entity to

crack the cipher and decode a data transmission. Implementation of standard

cryptographic algorithms, while fairly simple and straightforward with a computer, is not

a simple task when given only an FPGA. For this reason, the cryptographic algorithm

presented in this laboratory will focus only on encrypting eight-bit blocks of data using

an eight-bit key sequence.

2.1 Basics of Cryptography

 The general idea behind cryptography is a very simple one, and revolves around the

bitwise XOR function. At the sender, a cryptographic key sequence, K, is generated by an

encryption algorithm, and is combined with the plain text, P, that is to be encrypted. The

resulting cipher text may then be transmitted to the receiver, which must then use the

same key sequence to retrieve the plain text information from the cipher. This behavior is

possible because of the following relation:

P  K  K = P  0 = P

The entire encryption/decryption process is shown in the following diagram:

Figure 1 – The basic encryption/decryption process.

 While this process seems quite simple, as usual, the details present the greatest hurdle

to overcome. If a fixed key sequence were always to be used for a given encryption

Plain Text Plain Text Cipher Text

Key Sequence Key Sequence

Laboratory Experiment 9-2

algorithm, it would be a fairly simple matter to crack that key given enough time. The

algorithm would then be rendered useless because the key sequence is known and does

not change. Several things may be done to increase the security level of an algorithm

including: increasing the key length, changing the key during transmission, applying

several keys to a single data block, and a variety of other techniques. In this laboratory,

the encryption algorithm used will change the key value after each plain text character is

encoded or decoded. With this technique, it must be ensured that both the sender and

receiver are using the same key at any given time, and that they are using a key sequence

that is not easily deciphered.

2.2 Generating Encryption Keys

 In general, it is desirable for the series of keys used to encrypt or decrypt cipher text

to be a pseudo-random bit sequence. For instance, using a simple counter circuit, while

an easy way to generate changing key values, produces an encryption that is easy to

crack. Once one key value is discovered, all the following key values are automatically

known. Using a random sequence of keys to encrypt data means that even if one key is

discovered, all the other data will remain secure as none of the other keys are

automatically known. In reality, a true random sequence is impossible to produce,

however, a fairly good simulation may be achieved using a linear feedback shift-register

(LFSR).

 An LFSR, with several strategically placed XOR gates, will produce a fairly random

sequence in its bit positions. A problem with this design arises if the LFSR happens to

contain all zeros. In this situation, the use of XOR logic will never change any of the bits,

and the device will be stuck in that state. To avoid this problem, XNOR logic may be

used to create the next state of the shift register. Before going on, it would be beneficial

to show a diagram of one such shift register.

Figure 2 – An LFSR design used to generate key values.

 As is shown in Figure 2 above, the feedback relationship of the LFSR may be

specified using a polynomial representation. For a given length LFSR, there are multiple

polynomials that provide reasonable, but different, random sequencing. Therefore, the

choice of this polynomial adds an additional degree of security over simply the use of a

random key sequence. The design of the LFSR shown in Figure 2, with its characteristic

polynomial, will be used throughout this description, and will be implemented later in the

laboratory.

 In order to ensure that the sending and receiving devices are using the same key

sequences to manipulate data, two things must be specified for a given data transmission:

the starting value of the LFSR bits, and the number of shifts between sampled key values.

The starting values of the LFSR bits provide a reference point from which all the keys

will be generated. Since the sender and receiver devices are both using the same key

Laboratory Experiment 9-3

generation polynomial, they will be guaranteed to get the same key sequence if

incremented correctly. Allowing the number of LFSR shifts between sampled key values

to be greater than one provides an additional degree of security over simply using a single

increment. This way, even if an external entity knows the encryption polynomial being

used and the starting key, they may still be unable to decrypt a transmission if they do not

know the correct increment value being used.

 For the purposes of this laboratory experiment, the encryption circuit that will be

implemented must allow the initial LFSR bit values to be set to a specified initial key. In

addition, a constant increment value of only one shift between key samplings will be used

throughout this laboratory. While this design will not benefit from the added degree of

security that stems from allowing a shift greater than one between samplings, it will be

less complex to implement in the laboratory.

3. Preliminary Design

 In this laboratory experiment, each data block to be encrypted will consist of a single

byte. To give the data some meaning, this byte will contain an ASCII character from one

of the two tables contained in Appendix E. Your job, for this experiment, is to construct

an encryption/decryption circuit using the LFSR shown in Figure 2. When an LFSR_Set

signal is provided to the LFSR circuit, the byte value set as input to the circuit should be

stored in the bits of the LFSR. When an encrypt/decrypt signal is provided to your circuit,

it should shift the bits of the LFSR once, take the bitwise XOR of the LFSR and the input

byte, and display this result to the user. Since the encryption and decryption functions

both utilize the bitwise XOR functionality, this circuit will act as both an encryption and

decryption device depending on whether the input data byte is plain text or cipher text.

Before coming to lab, you should:

1. Write a VHDL code module that implements the required functionality of the

encryption key LFSR. This LFSR must have the ability to be set to an initial value,

and to increment by a single shift when appropriate signals are provided. Depending

on how you decide to implement your LFSR, you may find the FOR loop in VHDL a

useful tool. This loop must be entered within a process, and has the following format:

FOR index IN lower_bound TO upper_bound LOOP

 Sequence of Statements

END LOOP;

 The upper and lower bounds of the loop may be exchanged and the TO replaced with

DOWNTO in order to have the loop count down instead of up.

2. Use your VHDL module to manipulate an input data byte into either cipher text or

plain text depending on the type of data with which it is presented. Be sure to provide

your LFSR module with the appropriate control signals from the I/O controls. You

may find the pushbutton-switch debouncing module presented in Appendix D of this

laboratory manual useful for this purpose.

Laboratory Experiment 9-4

4. In the Lab

1. Enter your design for the data encryption/decryption circuit into the Xilinx ISE

development environment.

2. Simulate your design to ensure the proper functionality of the LFSR. If you included

the pushbutton-switch debouncing module in your design from the pre-laboratory,

you must remove it from your circuit temporarily to allow for simulation of your

circuit. If your design does not simulate properly, correct all inconsistencies before

continuing to the next section of this laboratory procedure.

3. Program the Spartan-3E Starter Kit board with your design and physically test your

circuit using the following data byte sequence and initial key value.

 Enter the following key value into your encoder/decoder: 34 (hex)

 Decrypt the following sequence of numbers:

67 (hex)

6A (hex)

D1 (hex)

 To verify if your design is working properly, the sequence you should get after

decryption is:

45 (hex)

43 (hex)

45 (hex)

 Which, if you consult the ACSII tables in Appendix E of this laboratory manual,

translates to the following character string:

ECE

4. After you have verified that your decryption circuit produces the correct results,

decrypt the following sequence of characters and include both the decrypted

hexadecimal results and the translated ASCII string in your laboratory report to be

turned in next week.

 Initial key value: C7 (hex)

 Data sequence:

AB 94 94 28 75 15 FC 07 D5 08

92 15 D8 05 28 79 65 6E B5 AE

38 DE 0E C5 AF 80 93 2D D5 FE

Laboratory Experiment 9-5

5. Finally, encrypt the following sequence of ASCII characters. Be sure to include the

hexadecimal results of the encryption and the translated cipher text ASCII string in

your laboratory report to be turned in next week.

 ASCII string: Goodbye

 Initial key value: 72 (hex)

 Data sequence:

47 6F 6F 64 62 79 65

5. Post-Lab

 Include a solution to the following questions in your laboratory write-up to be turned

in next week.

1. While the encryption/decryption circuit implemented in the laboratory did not utilize

shift amounts greater than one, the use of this technique is desirable to create some

additional security. If the LFSR is built using D flip-flops, compose the logic

functions to be presented to each of the flip-flop inputs in order to allow three shifts

for each rising edge of the clock. Each flip-flop in the 8-bit LFSR needs its own input

function, and you must carry the appropriate XNOR logic as shown in Figure 2

through your logic functions.

6. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

3. Meyer-Baese, Uwe. (2001). Digital Signal Processing with Field Programmable Gate

Arrays. Berlin: Springer-Verlag.

Laboratory Experiment 10-1

Laboratory Experiment 10:

D/A Converters

1. Purpose

 This laboratory experiment will introduce some basic digital-to-analog (D/A)

conversion circuits. The Spartan-3E Starter Kit board and an oscilloscope will be

employed to construct a counter module that will be used in this laboratory and to check

digital signal converted to analog signal.

2. Background

 Digital processing has become increasingly important for manipulating analog

signals needed in applications ranging from communications to motor control. In order to

achieve these processing requirements, a method of converting analog signals into a

digital format and back is necessary. An analog-to-digital converter is used to sample an

analog signal at a given time, and to generate a digital approximation of the signal

voltage at the time it was sampled. A series of these digital approximations may then be

chained together to get a digital approximation of the original analog signal. Since only a

finite number of bits are used to represent the signal voltage level, some precision is lost,

but this conversion allows a digital processing element to manipulate the analog signal

approximation. After manipulation of the digital signal, it may be necessary to convert

the digital representation of the signal back to an analog waveform. To achieve this, a

digital-to-analog converter receives a digital bit pattern and converts this bit pattern to an

analog voltage level at a single output. This laboratory experiment will introduce an

example of digital-to-analog circuit to be implemented with the Spartan-3E Starter Kit

board and some additional, externally supplied circuit elements.

2.1 D/A Conversion

 Creating a simple D/A converter circuit is an easy task, requiring only a set of

resistors. For this reason, and because the A/D converter requires the use of a D/A

converter, the D/A converter will be addressed first prior to the next laboratory. The R-

2R resistor ladder network is a very simple circuit that achieves all the functionality

required of a D/A converter. This circuit works by accepting a series of binary input bits,

and weighting them through the resistor network to provide an analog voltage output. A

schematic for this circuit is shown in Figure 1 below. For the purposes of this laboratory,

the value of R shown in Figure 1 will be 1 KΩ.

Laboratory Experiment 10-2

Figure 1 – An R-2R resistor ladder D/A converter.

While Figure 1 shows a four-bit version of the R-2R resistor ladder D/A converter, it may

be expanded for larger numbers of bits, using the same design principles used to create

the smaller version. The accuracy of this type of D/A converter is highly dependent on

the tolerances of the resistors used, and on variations in the voltage levels of the digital

inputs to the circuit. For these reasons, while this circuit is simple to design and construct,

it is rarely used in the digital signal processing industry. Commercially available D/A

converters often employ techniques such as current source networks, or pulse-width

modulation and filtering to achieve a greater degree of accuracy, predictability, and

uniformity of the analog output voltage.

2.2 Expansion Connectors – FX2 Breadboard

 Since we are required to connect the physical circuitry to the Spartan-3E Starter Kit

board, an expansion board will be used to connect R-2R resistor ladder D/A converter to

the Spartan-3E Starter Kit board. FX2 Breadboard will be used for an expansion board

connecting via Hirose 100-pin FX2 Connector (J3) on the Spartan-3E Starter Kit board.

There are various pin connections available for users including 40 I/O pins to connect

with the Spartan-3E Starter Kit board and the FX2 Breadboard. These I/O connections

are shared with other compartments on the Spartan-3E Starter Kit board, so you must be

aware of the pin assignment when using an expansion board. The detailed pin assignment

is listed on Table 15-1, Page 115 from Xilinx Spartan-3E Starter Kit Board User Guide.

Also, you must pay attention to jumper settings on FX2 Breadboard to deliver power to

VU(5.0V) and VCC(3.3V) busses. Read FX2 Breadboard Reference Manual to gain

correct jumper settings for FX2 Breadboard.

Digital

Circuit

2R

2R

2R

2R

MSB

LSB

2R

R

R

R

VOUT

(Analog)

Laboratory Experiment 10-3

3. Preliminary Design

 In this laboratory, the R-2R resistor ladder D/A converter circuit will be constructed

and tested. In addition to the external circuitry required, this circuit will require a four-bit

counter to be constructed, using the Spartan-3E FPGA and VHDL. This counter must not

only have the basic four-bit counter functionality, but must also have enable and

synchronous clear inputs, as well as an additional triggering output. The counter should

only advance when the enable input is logic high, and should reset to zero when the clear

input is asserted. The triggering output should be logic high when the output of the

counter is zero. This output will be used to trigger an oscilloscope in the laboratory in

order to view the output voltage from the D/A converter.

Before coming to lab, you should:

1. Compute the analog output voltage, VOUT, for each input combination to the R-2R

resistor ladder network shown in Figure 1, assuming a logic high digital input voltage

of 3.3-volts and a logic low input voltage of 0.0-volts. Use a value of 1 KΩ for each R

shown in the figure. List the input combinations along with the corresponding output

voltages in a table and turn this in as part of your pre-laboratory.

 HINT: You may wish to use superposition and Thevenin’s theorem rather than mesh

or nodal analysis.

2. Design a VHDL implementation of the four-bit counter described above. Be sure to

include the functionality to enable/disable the counter, and to clear its outputs. In

addition, include the triggering output to be presented as high when the output of the

counter is zero. Your design should use the selectable frequency clock divider module

from Appendix B of this laboratory. Include a printout of the VHDL code with your

pre-laboratory work.

4. In the Lab

1. Enter your design for the four-bit counter circuit into the Xilinx ISE development

environment.

2. Simulate your design to ensure the proper functionality of the counter. If you included

the clock division module in your design from the pre-laboratory, you must remove it

from your circuit temporarily to allow for a manageable simulation. If your design

does not simulate properly, correct all inconsistencies before continuing to the next

section of this laboratory procedure.

3. Construct the R-2R D/A converter circuit on the FX2 Breadboard. Connect the inputs

for this circuit to the outputs from your counter module running on the Spartan-3E

Starter Kit board, and set the counter to be continuously enabled. You should set your

clock divider to produce 1Hz or 10Hz, in order to check the output correctly.

Laboratory Experiment 10-4

4. Connect the analog output of your D/A converter circuit to an oscilloscope, and use

the trigger output of your counter module to trigger the oscilloscope. Measure the

voltages output by your D/A converter for each input combination. Record these

voltages in a table, and create a plot of the input digital value versus the output analog

voltage. How do your measured voltages differ from the “ideal” voltages that you

calculated in Pre-Laboratory Exercise 1? Be sure to discuss any differences you

observe in your laboratory report.

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 11-1

Laboratory Experiment 11:

A/D Converters

1. Purpose

 This laboratory experiment will introduce some analog-to-digital (A/D) conversion

circuits. The Spartan-3E Starter Kit board will be employed to use the counter module

constructed for the circuit in the previous laboratory.

2. Background

 Digital processing has become increasingly important for manipulating analog

signals needed in applications ranging from communications to motor control. In order to

achieve these processing requirements, a method of converting analog signals into a

digital format and back is necessary. An analog-to-digital converter is used to sample an

analog signal at a given time, and to generate a digital approximation of the signal

voltage at the time it was sampled. A series of these digital approximations may then be

chained together to get a digital approximation of the original analog signal. Since only a

finite number of bits are used to represent the signal voltage level, some precision is lost,

but this conversion allows a digital processing element to manipulate the analog signal

approximation. This laboratory experiment will introduce an example of this circuit to be

implemented with the Spartan-3E Starter Kit board and some additional, externally

supplied circuit elements.

 The circuits involved with A/D conversion are more complex than the simple R-2R

resistor ladder network presented in the previous laboratory. The basic idea for A/D

conversion is that of comparing a digital approximation for an analog signal with a

sampled value of the signal. A block diagram of this process is shown in the following

figure.

Figure 1 – Block diagram of a D/A converter.

Estimation
Circuit

D/A
Converter

S/H

Comparator

Analog Input

VA

Sampled Input

VAS

Start Clock

Done
Analog Estimate

VEST

Digital
Output

Laboratory Experiment 11-2

 The analog voltage signal to be converted is first fed into a Sample and Hold (S/H)

circuit. When the S/H circuit sees a rising edge of the Start signal, the analog voltage at

its input is sampled, and this value is retained until the next rising edge on the Start

signal. For the purposes of this experiment, we will not be concerned with the Sample

and Hold circuitry; instead, we will simply be providing a constant analog input voltage

to the A/D converter. The assertion of the Start signal is also used to begin the conversion

process itself. The comparator block checks the sampled analog voltage, VAS, against the

current analog estimate of the digital output signal, VEST. The estimation circuit adjusts

its output with each clock cycle until the estimated voltage matches the sampled voltage

as closely as possible. At this point, the estimation circuit asserts the Done signal and

holds its output at the current value until the next Start signal is asserted.

 While the previous discussion described the basic A/D conversion functionality, there

are still a few details of the estimation circuit that have not been addressed. The simplest

estimation circuit is composed of a counter that is initialized to zero when the start signal

is asserted, and counts up one step with each clock tick if (VAS – VEST) > 0. If this

condition is not true, (VAS –VEST)  0, the counter is disabled and its outputs will

correspond to the digital conversion of the analog signal. This estimation circuit forms

the heart of the sequential estimation A/D converter circuit that will be constructed in this

laboratory. As long as the analog estimate of the digital output is less than the sampled

value of the original analog signal, the estimate is increased incrementally, until the

estimate becomes larger than the sampled analog voltage. This behavior produces the

following output voltage behavior for a given analog input voltage.

Figure 2 – Output waveform for a sequential estimation A/D conversion process.

Voltage
(V.)

Time
(Clock Ticks)

VAS

1 2 3 4 5 6 7 8 9 0

VEST

Conversion
Complete

Laboratory Experiment 11-3

3. Preliminary Design

 In this laboratory, the sequential estimation A/D converter circuit will be constructed

and tested. In addition to the external circuitry required, this circuit will require the four-

bit counter constructed in the previous laboratory using the Spartan-3E FPGA and

VHDL.

Before coming to lab, you should:

1. Design a counter based sequential estimation A/D converter using the R-2R D/A

converter, the counter circuit you designed for the previous laboratory, and the

comparator circuit provided in Figure 3 below. The converter circuit should clear its

output when the Start signal is asserted, and should count up until the comparator

indicates that VEST > VAS. At this point, the estimation circuit should stop counting,

and a Done signal should be asserted (you may use a logic low assertion). Be sure to

include device pin numbers in your design.

Figure 3 – Schematic for the comparator circuit.

2. Assuming that the output of the estimation circuit for the A/D converter is in the 0.0

to 3.3 voltage range, what is the input voltage range for VA, assuming the use of the

four-bit R-2R resistor ladder network?

3. Explain a method for modifying Figure 1 to allow the conversion of both positive and

negative analog input voltages. Do not design any circuits for this bipolar converter;

instead, simply outline the procedure. Remember, the D/A converter circuit only

produces positive voltages.

4. If the bipolar converter from the previous question were to be constructed, what

would be the new range for the analog input voltage VA?

5. What will happen to the output voltage from the estimation circuit if the analog input

voltage is increased beyond the range calculated in the previous question?

VA

VEST

+

–

VA > VEST D1

560 Ω

+5.0 V.

-5.0 V.

Laboratory Experiment 11-4

4. In the Lab

1. Construct the sequential estimation A/D converter you designed in Pre-Laboratory

Exercise 3 and verify its functionality. For the +5V/-5V in the comparator, use the

Power Supply. For VA, use the function generator, outputting no AC signal, and a DC

offset of your desired analog voltage. Make sure all grounds (from the power supply,

function generator, oscilloscope, Spartan-3E, and your circuit) are tied together. To

prevent damage to the Spartan-3E Starter Kit board, test the output of your

comparator circuit with the oscilloscope before connecting it to an input pin of the

Spartan-3E FPGA. Be sure that the logic high output of the comparator does not

exceed 3.3 volts, and that the logic low output does not drop below 0.0 volts. If either

of these voltage thresholds is exceeded, adjust the power supply voltages to the

operational amplifier to get the output voltages within the correct range.

2. Create a table and record the voltage ranges corresponding to each output bit pattern

(0 to 15) for your circuit. How do these input voltage ranges compare to those of an

“ideal” A/D converter? When you are sure your converter circuit is functioning

properly, demonstrate its operation to your laboratory instructor.

3. Calculate the worst-case conversion time for your A/D converter and discuss this

result in your laboratory report.

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

Laboratory Experiment 12-1

Laboratory Experiment 12:

Successive Approximation A/D Converter

1. Purpose

 The previous laboratory experiment introduced the concepts of D/A and A/D

conversion, and this laboratory will introduce a new A/D conversion technique. A

successive approximation A/D converter will be designed and implemented, using the

Spartan-3E Starter Kit board. This type of A/D converter produces more uniform

conversion times than the sequential estimation circuit used in the previous laboratory.

2. Background

 The sequential estimation A/D converter circuit designed in the previous laboratory

experiment, while simple to construct, produces conversion times that may vary widely.

For a small analog input voltage, the conversion time to a digital value will be relatively

short, but for a large analog input voltage, a four-bit A/D converter will have a worst-case

conversion time of 16 clock cycles. There are several techniques that may be used to

improve upon the performance of the A/D converter, and one of these techniques is the

Successive Approximation conversion approach.

2.1 Successive Approximation A/D Conversion

 Rather than simply counting up to obtain an input voltage estimate, the successive

approximation A/D converter sets individual output bits and tests their effects on the

estimated voltage. A given digital conversion process begins with setting the most

significant bit of the digital output to one, and observing the comparison of the estimated

voltage, VEST, with the actual analog input, VA. If VEST is greater than VA, then the most

significant bit is reset to zero, and the process repeats with the next most significant bit.

If, on the other hand, the estimate is less than the analog input voltage, the first bit is

allowed to stay at one, and the next most significant bit is set and tested. This process is

repeated until all the bits of the digital output have been appropriately set. Ultimately, the

resulting digital output will have an analog conversion that is slightly less than the actual

analog input. This may be compared to the sequential estimation A/D converter, where

the analog conversion of the digital output was slightly greater than the actual analog

voltage input. The overall conversion process is faster than that for the worst-case of the

sequential estimation A/D converter. Whereas, an n-bit sequential estimation A/D

converter has a worst-case conversion time of 2
n
-1 clock cycles, an n-bit successive

approximation A/D converter has a worst-case conversion time of n clock cycles. The

following figure shows an example of a complete conversion process, using a successive

approximation A/D converter.

Laboratory Experiment 12-2

Figure 1 – A complete successive approximation A/D conversion process.

2.2 Constructing a Successive Approximation A/D Converter

 All of the conversion functionality of the successive approximation A/D converter

may be summed up quite nicely in a flowchart describing an Algorithmic State Machine

(ASM). Figure 2 below shows just such a flowchart.

Figure 2 – ASM chart for the successive approximation A/D converter.

Voltage
(V.)

Time
(Clock Ticks)

VA

1 2 3 4 5 6 0

VEST

Conversion
Complete

 A

Yes

START

B

B
A

DONE

WAIT

No

CLR_B3

CLR_B2

CLR_B1
CLR_B0

SET_B3

TST3

Yes
VEST > VA

No

CLR_B3

SET_B2

TST2

Yes
VEST > VA CLR_B2

SET_B1

TST1

Yes
VEST > VA

No

CLR_B1

SET_B0

TST0

Yes
VEST > VA

No

CLR_B0

No

Laboratory Experiment 12-3

 In the initial WAIT state, this circuit loops, waiting for a START signal telling it to

initiate a new conversion process. While the circuit waits, it outputs a DONE signal in

order to let any interface hardware know that the previous conversion has completed, the

output may be read, and a new conversion may be initiated at any time. When the START

signal is asserted, the bits of the digital output (B3 to B0) are cleared in preparation for

the set-and-test operations that will begin shortly. In the TST3 state, the most significant

bit of the digital output is set to one, and the resulting voltage estimate is compared to the

analog input, using an external comparator circuit. If the estimate is larger than the analog

input, the bit that was set must be cleared. If the estimate is still less than the analog input

voltage, the bit that was set may be left alone. When this testing process is completed, the

device will proceed to the TST2 state. This state performs the same operations as the

TST3 state, only it operates on the second most significant bit of the digital output. Each

of the following states operates on a successively less significant bit, until all four bits for

this four-bit A/D converter have been appropriately set.

3. Preliminary Design

 This laboratory experiment will make use of both the R-2R resistor ladder network,

and the voltage comparator circuits from the previous laboratory. These circuits will be

constructed and tied together in the same manner as for testing the sequential estimation

A/D converter circuit. Like the previous laboratory experiment, all the digital

functionality of the successive approximation A/D converter will be implemented using

the Spartan-II FPGA on the Spartan-3E Starter Kit board. The following figure shows a

block diagram of the successive approximation A/D converter.

Figure 3 – Block diagram of a successive approximation A/D converter.

Before coming to lab, you should:

1. Design a VHDL implementation of the four-bit successive approximation A/D

converter described in the ASM diagram of Figure 2. Be sure to include a RESET

signal in your design that, when asserted, will put the device in the WAIT state. In the

laboratory, you will need to use one of the clock divider modules supplied in

Appendix B of this laboratory manual. In order to test your design, however, the

module you chose to employ must be removed; therefore, you may decide to include

the module now or in the laboratory.

VA

VEST +

–

A/D
Converter

OUTPUT3
OUTPUT2
OUTPUT1

OUTPUT0
DONE

CLK

VEST > VA
START

CLOCK

START B
0

B
1

B
2

B
3

D
O

N
E

Comp.
D/A

Converter

INPUT3
INPUT2
INPUT1

INPUT0

OUT

Laboratory Experiment 12-4

2. Draw a schematic diagram of your complete successive approximation A/D

converter, including the comparator circuit, the FPGA implementation of the

converter itself, and the D/A resistor ladder converter. Be sure to include pin numbers

for all circuit components.

3. Draw a timing diagram for the analog-to-digital conversion shown in Figure 1, in the

Background section of this laboratory. Be sure to show the state of the device and

output bit values as the conversion process proceeds.

4. As was discussed in the Background section of this laboratory, the analog conversion

of the final digital output from one of these circuits may not match the analog input

voltage exactly. Instead, there is usually some error between the output voltage

estimate, VEST, and the actual analog input, VA. Let

ESTA VVE 

 Write an equation for the maximum error, E, in terms of the total conversion voltage

range Vr, and the number of bits, n, in the digital output. Using this equation,

calculate the maximum error, in volts, when Vr = 5V, and n = 4. Repeat this exercise

with Vr = 5V and n = 8.

4. In the Lab

1. Enter your design for the four-bit successive approximation A/D converter circuit into

the Xilinx ISE development environment.

2. Simulate your design to ensure the proper functionality of the converter. If you

included the clock division module in your design from the pre-laboratory, you must

remove it from your circuit temporarily, to allow for a manageable simulation. If your

design does not simulate properly, correct all inconsistencies before continuing to the

next section of this laboratory procedure.

3. Construct the complete successive approximation A/D converter circuit you designed

in Pre-Laboratory Exercise 2, and verify its functionality. To prevent damage to the

Spartan-3E Starter Kit board, test the output of your comparator circuit before

connecting it to an input pin of the Spartan-3E FPGA. Be sure that the logic high

output of the comparator does not exceed 3.3 volts, and that the logic low output does

not drop below 0.0 volts. If either of these voltage thresholds is exceeded, adjust the

power supply voltages to the operational amplifier to get the output voltages within

the correct range.

4. Create a table and record the input voltage ranges corresponding to each output bit

pattern (0 to 15) for your circuit. Observe these input voltage ranges and note any

variations in regularity in your laboratory report. When you are sure that your

converter circuit is functioning properly, demonstrate its operation to your laboratory

instructor.

Laboratory Experiment 12-5

5. In your laboratory report, discuss some of the functional differences between the

sequential estimation and successive approximation A/D converters. Be sure to point

out some advantages and disadvantages of each design. Is there ever an instance

where the sequential estimation A/D converter will be faster than the successive

approximation A/D converter?

5. References

For further information on digital logic design, consult:

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall.

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition.

 New Jersey: Prentice Hall.

 Appendix A-1

Appendix A:

Spartan-3E Starter Kit board Pin Mappings

Board Designator Spartan-3e Pin Number

SW0 L13

B
o

a
rd

S
w

it
c
h

e
s

SW1 L14

SW2 H18

SW3 N17

J1-SW0 B4

J
1

 P

M
O

D

S
w

it
c
h

e
s

J1-SW1 A4

J1-SW2 D5

J1-SW3 C5

J2-SW0 A6

J
2

 P

M
O

D

S
w

it
c
h

e
s

J2-SW1 B6

J2-SW2 E7

J2-SW3 F7

BTN_NORTH V4

P
u

s
h

B
u

tt
o

n
s

BTN_EAST H13

BTN_SOUTH K17

BTN_WEST D18

ROT_A K18

R
o

ta
ry

D
ia

l

ROT_B G18

ROT_CENTER V16

LED0 F12

B
o

a
rd

 L
E

D
s
 LED1 E12

LED2 E11

LED3 F11

LED4 C11

LED5 D11

LED6 E9

LED7 F9

LCD_DB_4 R15

C
h

a
ra

c
te

r
L
C

D

LCD_DB_5 R16

LCD_DB_6 P17

LCD_DB_7 M15

LCD_E M18

LCD_RS L18

LCD_RW L17

 Appendix A-2

Possible Clock Sources

Spartan-3e Pin Number Description

C9 Main board 50 MHz crystal oscillator.

B8 Auxiliary clock oscillator socket.

A10 SMA clock connector.

 Appendix B-1

Appendix B:

VHDL 50-MHz Clock Divider Modules

1. 1 Hz Clock Generator

This first code module may be used to generate a clock rate of approximately 1 Hz

using a 50 MHz crystal oscillator provided on the Spartan-3E Starter Kit board. In order

to produce the correct output from this module, the input clock signal must be mapped to

pin C9 of the Spartan-3e FPGA. This pin is tied directly to the output of the 50 MHz

crystal oscillator, and is divided down by this code module to produce a bounce-free, 1

Hz clock signal.

-- One hertz clock divider code.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity one_hz_clock is

 Port (clk : in std_logic;

 one_hz : out std_logic);

end one_hz_clock;

architecture Behavioral of one_hz_clock is

begin

 process (clk) -- Start a process.

 variable count : integer := 0; -- Variable declaration.

 begin

 if clk = '1' and clk'event then -- Rising edge detection.

 count := count + 1;

 if count = 50000000 then -- Taken off a 50MHz clock.

 count := 0; -- Reset count for next cycle.

 end if;

 if count >= 0 and count <= 25000000 then

 one_hz <= '1'; -- High portion of 1 HZ clock.

 else

 one_hz <= '0'; -- Low portion of 1 HZ clock.

 end if;

 end if;

 end process;

end Behavioral;

 Appendix B-2

2. Selectable Output Frequency Clock Divider

This second code module also achieves division of the 50 MHz signal from the

crystal oscillator, but this module allows the output clock rate to be selected from four

values based upon two extra input signal values. The following table shows the resulting

output clock rate for each input combination possible:

s1 s0 Output Clock Frequency

0 0 1/10 Hz

0 1 1 Hz

1 0 10 Hz

1 1 1 KHz

Table 1 – Mapping of selection inputs to output clock frequencies.

It may be desirable to utilize this clock divider circuit in the event that a sequential

circuit design allows for two or more unused board toggle switches. The behavior of the

design may then be observed at a variety of different rates, including one that most likely

may only be viewed using a logic analyzer.

-- Selectable output frequency clock divider code.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity selectable_clock is

 Port (clk : in std_logic;

 s0 : in std_logic;

 s1 : in std_logic;

 out_clk : out std_logic);

end selectable_clock;

-- If s1 and s0 are both low, the output clock rate is 1/10 Hz.

-- If s1 is low and s0 is high, the output clock rate is 1 Hz.

-- If s1 is high and s0 is low, the output clock rate is 10 Hz.

-- If s1 and s0 are both high, the output clock rate is 1 KHz.

architecture Behavioral of selectable_clock is

begin

 process (clk, s0, s1) -- Start a process.

 variable count : integer := 0; -- Variable declaration.

 begin

 if clk = '1' and clk'event then -- Rising edge detection.

 count := count + 1;

 -- Code to create the 1/10 Hz clock.

 if s0 = '0' and s1 = '0' then

 if count >= 500000000 then -- Taken off a 50MHz clock.

 count := 0; -- Reset count for next cycle.

 end if;

 Appendix B-3

 if count >= 0 and count <= 250000000 then

 out_clk <= '1'; -- High portion of 1/10 HZ clock.

 else

 out_clk <= '0'; -- Low portion of 1/10 HZ clock.

 end if;

 end if;

 -- Code to create the 1 Hz clock.

 if s0 = '1' and s1 = '0' then

 if count >= 50000000 then -- Taken off a 50MHz clock.

 count := 0; -- Reset count for next cycle.

 end if;

 if count >= 0 and count <= 25000000 then

 out_clk <= '1'; -- High portion of 1 HZ clock.

 else

 out_clk <= '0'; -- Low portion of 1 HZ clock.

 end if;

 end if;

 -- Code to create the 10 Hz clock.

 if s0 = '0' and s1 = '1' then

 if count >= 5000000 then -- Taken off a 50MHz clock.

 count := 0; -- Reset count for next cycle.

 end if;

 if count >= 0 and count <= 2500000 then

 out_clk <= '1'; -- High portion of 10 HZ clock.

 else

 out_clk <= '0'; -- Low portion of 10 HZ clock.

 end if;

 end if;

 -- Code to create the 1 KHz clock.

 if s0 = '1' and s1 = '1' then

 if count >= 50000 then -- Taken off a 50MHz clock.

 count := 0; -- Reset count for next cycle.

 end if;

 if count >= 0 and count <= 25000 then

 out_clk <= '1'; -- High portion of 1 KHz clock.

 else

 out_clk <= '0'; -- Low portion of 1 KHz clock.

 end if;

 end if;

 end if;

 end process;

end Behavioral;

 Appendix C-1

Appendix C:

Adding Additional Logic to the Spartan-3E Starter Kit board

1. Motivation

As the designs you wish to download to the Spartan-3E Starter Kit board become

more complex, you may find that the main board does not contain enough logic switches

to manipulate all the inputs of your circuit. In this event, it may be desirable to add

several logic switches to the test board, thereby increasing the input capabilities of the

board. This task is relatively simple with the correct supplies and a little time.

2. Supply List

- FX2 expansion board

- DIP-Switch Package

- 4.7 KΩ Resistors

3. Connection Procedure

First, it should be noted that while it is possible to add DIP switches to the Spartan-3E

Starter Kit board utilizing a separate, user provided breadboard, the use of only the FX2-

BB board is highly recommended. This breadboard will minimize the possibility of

incorrect connections that may permanently damage the test board.

The Xilinx XC3S500E Spartan-3E FPGA that the Spartan-3E Starter Kit board is

designed around uses a 3.3 V LVTTL/LVCMOS voltage level for its inputs and outputs.

This means that while a logic low input is still represented by 0.0 V, a logic high input is

represented by only 3.3 V. This is a critical note when building any interface hardware

for the Spartan-3E Starter Kit board, because if standard TTL voltage levels are

interfaced to the Spartan-II FPGA, the chip may be permanently damaged.

In order to add a logic switch to the Spartan-3E Starter Kit board, two resistors and

some jumper wires are needed. The following schematic shows how to create one such

logic switch.

Figure 1 – Schematic for an additional logic switch.

4.7 K Ω

Spartan 3
Input Pin

V DD DI
Switch

4.7 K Ω

 Appendix C-2

One resistor in the schematic presented in Figure 1 is used to pull down the logic

level of the Spartan-3E input pin when the DIP-switch is open, producing a logic low.

The other resistor is responsible for providing input protection to the Spartan-3E input

pin. When the switch is closed, the Spartan-3E input pin is presented with a logic high,

and the resistor is then used to limit the current flow in the system, preventing a short of

VDD to ground.

The schematic presented in Figure 1 should be replicated for each additional logic

switch to be added to the Spartan-3E Starter Kit board. In order to utilize the logic

switches that are added to the test board, they must be connected to input pins of the

Spartan-3E FPGA that are not already connected to other I/O devices. If an added DIP-

switch were to be connected to a Spartan-3E pin already in use, this could result in a short

that could damage the Spartan-3E Starter Kit board. It should be mentioned that IO1 to

IO20 are shared with LEDs, J1, J2 and J4 of Spartan-3E Starter Kit board.

4. List of Available Spartan-3E I/O Pins

The following table lists the Spartan-3E I/O pins that may be assigned to additional

logic switches added to the Spartan-3E Starter Kit board.

Starter KIT

Expansion

Connection

(J3)

FX2

Expansion

Connection

(J12)

Spartan-3E

Pin Number

A6 IO1 B4

A7 IO2 A4

A8 IO3 D5

A9 IO4 C5

A10 IO5 A6

A11 IO6 B6

A12 IO7 E7

A13 IO8 F7

A14 IO9 D7

A15 IO10 C7

A16 IO11 F8

A17 IO12 E8

A18 IO13 F9

A19 IO14 E9

A20 IO15 D11

A21 IO16 C11

A22 IO17 F11

A23 IO18 E11

A24 IO19 E12

A25 IO20 F12

A26 IO21 A13

A27 IO22 B13

A28 IO23 A14

A29 IO24 B14

A30 IO25 C14

A31 IO26 D14

A32 IO27 A16

A33 IO28 B16

A34 IO29 E13

A35 IO30 C4

A36 IO31 B11

 Appendix C-3

A37 IO32 A11

A38 IO33 A8

A39 IO34 G9

A40 IO35 D12

A41 IO36 C12

A42 IO37 A15

A43 IO38 B15

A44 IO39 C3

A45 IO40 C15

Table 1 – List of Spartan-3E I/O pins and their connector mappings.

5. How to connect the FX2-BB Expansion Board

The board can be seen in Figure 2 below.

Figure 2 – Picture of FX2-BB Expansion Board

The 100-pin connector at the left is connected to the Spartan-3E. Make sure that the

jumpers above and below the connector are in place, ensuring that power is supplied to

the VU (5.0V) and VCC (3.3V) buses on the board. The 40 I/O pins can be found to the

right of the connector. GND, VU, and VCC can be found just to the right of I/O pin 1.

Make sure that the ground in your circuit is tied to the ground of the Spartan, as well as to

the grounds of any additional instruments you are using.

 Appendix D-1

Appendix D:

Pushbutton Switch De-bouncer Module

This code module may be used to de-bounce the pushbutton switches on the Spartan-

3E Starter Kit board. The input to this module may be attached to any of the on-board

pushbutton switches, and the clock must be tied to pin C9 of the Spartan-3E FPGA. In

this configuration, when the pushbutton switch is high for 1,000,000 continuous clock

cycles (approximately 20 ms), the output of the module will go to high for the remainder

of the duration for which the switch is activated.

-- Pushbutton debouncer code module.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity debouncer is

 Port (input : in std_logic;

 clk : in std_logic;

 output : out std_logic);

end debouncer;

architecture Behavioral of debouncer is

begin

 process (clk, input) -- Start a process.

 variable count : integer := 0; -- Variable declaration.

 begin

 if clk = '1' and clk'event then -- Rising edge detection.

 if input = '1' then -- Input is high at clock.

 count := count + 1; -- Increment count.

 else -- Input is low at clock.

 count := 0; -- Reset count.

 end if;

 if count > 1000000 then -- Input high long enough to

 -- output.

 output <= '1'; -- Output high.

 else -- Input not high long enough.

 output <= '0'; -- Output low.

 end if;

 end if;

 end process;

end Behavioral;

 Appendix E-1

Appendix E:

ASCII-I and ASCII-II Tables

 The following tables contain the ASCII-I and ASCII-II characters along with their

decimal and hexadecimal equivalents.

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 Null 32 20 Space 64 40 @ 96 60 `

1 01 Start of Heading 33 21 ! 65 41 A 97 61 a

2 02 Start of Text 34 22 “ 66 42 B 98 62 b

3 03 End of Text 35 23 # 67 43 C 99 63 c

4 04 End of Transmit 36 24 $ 68 44 D 100 64 d

5 05 Enquiry 37 25 % 69 45 E 101 65 e

6 06 Acknowledge 38 26 & 70 46 F 102 66 f

7 07 Audible Bell 39 27 ' 71 47 G 103 67 g

8 08 Backspace 40 28 (72 48 H 104 68 h

9 09 Horizontal Tab 41 29) 73 49 I 105 69 i

10 0A Line Feed 42 2A * 74 4A J 106 6A j

11 0B Vertical Tab 43 2B + 75 4B K 107 6B k

12 0C Form Feed 44 2C ‘ 76 4C L 108 6C l

13 0D Carriage Return 45 2D - 77 4D M 109 6D m

14 0E Shift Out 46 2E . 78 4E N 110 6E n

15 0F Shift In 47 2F / 79 4F O 111 6F o

16 10 Data Link Escape 48 30 0 80 50 P 112 70 p

17 11 Device Control 1 49 31 1 81 51 Q 113 71 q

18 12 Device Control 2 50 32 2 82 52 R 114 72 r

19 13 Device Control 3 51 33 3 83 53 S 115 73 s

20 14 Device Control 4 52 34 4 84 54 T 116 74 t

21 15 Neg. Acknowledge 53 35 5 85 55 U 117 75 u

22 16 Synchronous Idle 54 36 6 86 56 V 118 76 v

23 17 End Trans. Block 55 37 7 87 57 W 119 77 w

24 18 Cancel 56 38 8 88 58 X 120 78 x

25 19 End of Medium 57 39 9 89 59 Y 121 79 y

26 1A Substitution 58 3A : 90 5A Z 122 7A z

27 1B Escape 59 3B ; 91 5B [123 7B {

28 1C File Separator 60 3C < 92 5C \ 124 7C |

29 1D Group Separator 61 3D = 93 5D] 125 7D }

30 1E Record Separator 62 3E > 94 5E ^ 126 7E ~

31 1F Unit Separator 63 3F ? 95 5F _ 127 7F 

Table 1 – ASCII-I Values.

 Appendix E-2

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

128 80 Ç 160 A0 á 192 C0 └ 224 E0 α

129 81 ü 161 A1 í 193 C1 ┴ 225 E1 β

130 82 é 162 A2 ó 194 C2 ┬ 226 E2 Г

131 83 â 163 A3 ú 195 C3 ├ 227 E3 π

132 84 ä 164 A4 ñ 196 C4 ─ 228 E4 Σ

133 85 à 165 A5 Ñ 197 C5 ┼ 229 E5 σ

134 86 å 166 A6 ª 198 C6 ╞ 230 E6 μ

135 87 ç 167 A7 ° 199 C7 ╟ 231 E7 τ

136 88 ê 168 A8 ¿ 200 C8 ╚ 232 E8 Ф

137 89 ë 169 A9 ⌐ 201 C9 ╔ 233 E9 Θ

138 8A è 170 AA ¬ 202 CA ╩ 234 EA Ω

139 8B ï 171 AB ½ 203 CB ╦ 235 EB δ

140 8C î 172 AC ¼ 204 CC ╠ 236 EC ∞

141 8D ì 173 AD ¡ 205 CD ═ 237 ED 

142 8E Ä 174 AE « 206 CE ╬ 238 EE ε

143 8F Å 175 AF » 207 CF ╧ 239 EF ∩

144 90 É 176 B0 ░ 208 D0 ╨ 240 F0 ≡

145 91 æ 177 B1 ▒ 209 D1 ╤ 241 F1 ±

146 92 Æ 178 B2 ▓ 210 D2 ╥ 242 F2 ≥

147 93 ô 179 B3 │ 211 D3 ╙ 243 F3 ≤

148 94 ö 180 B4 ┤ 212 D4 ╘ 244 F4 

149 95 ò 181 B5 ╡ 213 D5 ╒ 245 F5 

150 96 û 182 B6 ╢ 214 D6 ╓ 246 F6 

151 97 ù 183 B7 ╖ 215 D7 ╫ 247 F7 ~

152 98 ÿ 184 B8 ╕ 216 D8 ╪ 248 F8 ˚

153 99 Ö 185 B9 ╣ 217 D9 ┘ 249 F9 ˙

154 9A Ü 186 BA ║ 218 DA ┌ 250 FA ∙

155 9B ¢ 187 BB ╗ 219 DB █ 251 FB √

156 9C £ 288 BC ╝ 220 DC ▄ 252 FC ⁿ

157 9D ¥ 189 BD ╜ 221 DD ▌ 253 FD f

158 9E ₧ 190 BE ╛ 222 DE ▐ 254 FE ■

159 9F ƒ 191 BF ┐ 223 DF ▀ 255 FF 

Table 2 – ASCII-II Values.

	Introduction
	Laboratory Experiment 1
	Laboratory Experiment 2
	Laboratory Experiment 3
	Laboratory Experiment 4
	Laboratory Experiment 5
	Laboratory Experiment 6
	Laboratory Experiment 7
	Laboratory Experiment 8
	Laboratory Experiment 9
	Laboratory Experiment 10
	Laboratory Experiment 11
	Laboratory Experiment 12
	Appendix_A
	Appendix_B
	Appendix_C
	Appendix_D
	Appendix_E

