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Introduction 
 

 This laboratory course is intended to provide the experimenter with experience 

developing advanced digital logic circuits, and with downloading these circuits to an 

FPGA programmable logic device.  To this end, the VHDL hardware definition language 

is used for specifying nearly all the circuits for this laboratory course.  VHDL code files 

may be entered into the Xilinx ISE circuit development environment for testing and 

eventual download to a test board containing a Field Programmable Gate Array (FPGA) 

programmable logic device. 

 Some students may be taking this course as a remote student, or with a remote student 

as a lab partner. There are some other tools they should become familiar with. The first is 

the Elluminate software. This is the environment through which local and remote 

students will interact with each other. It is recommended that students read through the 

tutorial found in the Elluminate Manual, and answer the questions at the end. 

 The other tools available to remote students are remote interfaces to the Oscilloscope 

and Function Generator. Documentation for how to access these interfaces can be found 

in Appendices F and G. 

 A basic tutorial of the Xilinx ISE development environment, and the VHDL language 

itself, is contained within the first few Orientation experiments of this laboratory manual; 

therefore, this introduction will focus on the hardware to be used in this laboratory 

course.  The test board for this course is developed by Digilent, Inc. and is called the 

Spartan-3E Starter Kit board built around a Xilinx XC3S500E Spartan-3E FPGA device. 

 

1. The Xilinx Spartan-3E FPGA 
 

   The Spartan-3E FPGA device is composed of a matrix of Configurable Logic 

Blocks (CLBs), surrounded by an array of programmable Input/Output Blocks (IOBs).  

Specifically, the XC3S500E FPGA that is used for this laboratory course contains 1,164 

total CLBs in a matrix of 46 rows and 34 columns.  A CLB in the Spartan-3E device is 

organized into four slices.  Each CLB is composed of four slices. Each slice, in turn, is 

composed of two Look-Up Tables (LUT), some control logic, and two storage elements 

to be used as a flip-flop or latch. There are two types of slices, two SLICEL and two 

SLICEM per CLB. SLICEM slices have additional hardware, two 16x1 RAM blocks and 

two 16-bit Shift Registers. This allows SLICEM slices to acts as not only logic but also 

as distributed RAM and Shift Registers. Each LUT and its corresponding storage element 

are called a Logic Cell (LC). Each LC in the slice is a versatile memory device, and is 

used to store the functional specification of part of a larger digital logic circuit.  These 

LCs may act as standard memory, shift registers, or driving devices for a portion of a 

circuit. From benchmark standards, Xilinx LCs (LUT plus storage element) have been 

found to be more efficient then LUT only designs, making each slice equivalent to 2.25 

simple LCs. This provides a total equivalent performance of 10,476 Logic Cells for this 

device. The functional behavior of each LC in the Spartan-3E device is determined 

automatically by the Xilinx ISE development environment based upon the circuit to be 

programmed to the FPGA. 

 While the logic cells in each CLB may be used as memory storage elements, this 

could prove wasteful for memory intensive programs.  For this reason, the Spartan-3E 
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FPGA contains twenty blocks of supplementary RAM, each containing 18K bits of 

storage.  Just as with programming the LCs in the FPGA, the usage and programming of 

these RAM blocks is decided by the compiler in the Xilinx ISE development tool.  When 

the RAM is considered together with the CLBs in the FPGA, the XC3S500E has a total 

of 500,000 system gates. 

 The XC3S500E also contains twenty Dedicated Multipliers. The multiplier blocks 

allow for full 18 bit two’s compliment multiplication with a full precision 36 bit output. 

In addition to the smaller multiplication programmable ability of the LUTs these provide 

the ability to perform efficient multiplication for a wide variety of applications. 

 In addition, the XC3S500E contains 232 user available IOBs, defining the maximum 

number of inputs and outputs possible for the device.  Each IOB contains three pairs of 

storage elements, an input pair, an output pair, and a three-state pair. Each of which 

through a VHDL program, may be used as edge-triggered D-type flip-flops for registered 

outputs, or may be bypassed for standard combinational logic output functionality.  The 

IOBs on the Spartan-3E Starter Kit board are configured to accept LVTTL voltage levels 

of 0.0 volts for logic low, and 3.3 volts for logic high.  Any external circuits that may be 

constructed to interface with the Spartan-3E FPGA should not exceed these voltage 

ranges under any circumstances.  If this interface voltage range is not strictly adhered to, 

permanent damage to the Spartan-3E Starter Kit board and Spartan-3E FPGA may result. 

 This has been a very cursory description of the structure of the Spartan-3E FPGA 

used in this laboratory course.  For much more detailed information about the device 

functionality, please consult the datasheet for the Spartan-3E family, which can be found, 

along with a great deal of other useful information, at the Xilinx web site.  The URL for 

the company web site may be found in the References section at the end of this 

introduction. 

 

2. The Spartan-3E Starter Kit board 
 

 While the Spartan-3E FPGA is a very capable device, it is not something that may 

simply be dropped into a breadboard and programmed.  Typically, complicated devices 

require complicated interface protocols, and this device is no exception.  Fortunately, the 

people at Digilent, Inc. incorporated much of the hard work interfacing with this FPGA 

into their 3E main board, allowing for a quite simple to use test system. 

 The Spartan-3E Starter Kit board interfaces with a computer via its USB port.  This 

connection allows designs created in the Xilinx ISE development environment to be 

downloaded directly into the Spartan-3E FPGA for testing and analysis.  Configuration of 

the FPGA is achieved through an industry standard protocol called boundary-scan JTAG.  

This protocol allows anywhere from one to many FPGA devices to be daisy-chained 

together and programmed sequentially from a single source.  This programming source 

may be a configuration PROM or, as in this laboratory course, an active signal source 

such as the USB port. 

 In addition to the JTAG support circuitry, the Spartan-3E Starter Kit board contains 

an on-board crystal oscillator, a SMA connector for external clock sources, and an 8 pin 

DIP socket.  The boards used in this laboratory course have 50 MHz oscillators mounted.  

In addition to the crystal oscillator, a pushbutton switch on the main board may also be 

used as a clock source for designs downloaded into the FPGA.  While this pushbutton 
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switch may be useful for some simple designs, it is not debounced, and may produce 

undesirable effects when testing certain circuits. 

 Finally, the Spartan-3E Starter Kit board is equipped with three expansion ports that 

may be used to interface with other test equipment produced by Digilent, Inc. A large 

FX2 expansion port and 2 6-pin expansion ports. These 6-pinexpansion ports are used 

most frequently to interface directly with the PMOD-SWITCH boards discussed in the 

next section of this introduction.  Some of the later laboratory experiments, however, will 

employ a Digilab breadboard inserted to the FX2 Edge Connector in order to interface 

custom circuitry with the Spartan-3E FPGA. 

 

3. The Spartan-3E Starter Kit board I/O and PMOD-SWITCH Board 
 

 As this laboratory course proceeds, the experimenter will most likely become very 

familiar with the Digilab PMOD-SWITCH interface board and main board I/O devices.  

From the very first experiment onward, four toggle switches and eight individual LEDs 

on the main board plus the eight addition switches provided by the PMOD-SWITCH 

boards will be the primary means of interfacing with a circuit downloaded into the 

Spartan-3E FPGA.  In addition to these standard interface devices, the main board also 

contains four pushbutton switches and a rotary push button, which may also be used to 

provide data to the Spartan-3E FPGA.  In order to utilize any of these interface devices, 

inputs and outputs of a VHDL design are assigned to Spartan-3E FPGA pins, which, in 

turn, are hardwired to specific devices.  Appendix A of this laboratory manual contains a 

Spartan-3E pin to I/O device mapping that will be used throughout this laboratory course. 

 

 In addition to the simple I/O devices already discussed, the Spartan-3E Starter Kit 

board also contains a 2 line by 16 character LCD display. Using LCD is a practical way 

to display a variety of information using standard ASCII and custom characters. The 

FPGA controls the LCD via the 4-bit data interface. Although the LCD supports an 8-bit 

data interface, the Starter Kit board uses a 4-bit data interface to remain compatible with 

other Xilinx development boards and to minimize total pin count. Most applications treat 

the LCD as a write only peripheral and never read from the display. 

 

The 2 x 16 character LCD has an internal graphics controller that has three 

internal memory regions, each with a specific purpose; DD RAM, CG ROM and CG 

RAM. The Display Data RAM (DD RAM) stores the character code to be displayed on 

the screen. Most applications interact primarily with DD RAM. The Character Generator 

ROM (CG ROM) contains the font bitmap for each of the predefined characters that the 

LCD screen can display. The Character Generator RAM (CG RAM) provides space to 

create eight custom characters Bitmaps. 

 

 Beyond even the LCD display in terms of complexity, the main board also provides 

both a PS2 port and a VGA port.  The PS2 port allows for a mouse or a keyboard to input 

data to the Digilab test system, and the VGA port allows data to be displayed on a 

computer monitor.  Both of these interface ports require complex timing and control that 

will not be introduced in the course of the regular laboratory experiments, but may 

optionally be explored in the final course project. 
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4. References 
 

For further information on any of these hardware components, feel free to consult the 

following web sites for datasheets and schematics: 

1. For information about the Spartan-3E FPGA see: www.xilinx.com. 

2. For information about the Digilab test board see: www.digilentinc.com. 
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Laboratory Experiment 1: 

Code Conversion 
 

1. Purpose 
 

 In this lab, you will design and build a simple code converter circuit using the 

Spartan-3E Starter Kit board, which is designed around the Xilinx Spartan-3E XC3S500E 

FPGA. During this laboratory, you will gain experience using the Xilinx ISE digital 

circuit development tools and the ISim circuit simulation tools. 

 

2. Background 
 

Converting data from a human-friendly format into a form that is understandable by a 

machine is a key concept in any digital logic design environment. Computers and digital 

logic circuits in general, are only able to interpret data in binary form. Every form of 

data, from integers to characters, must be converted into a binary string in order for a 

computer to be able to manipulate and store them. This process is called encoding the 

data for use in a computer. Literally any data-encoding scheme will work as long as data 

is converted into a binary form that the computer is programmed to understand. For this 

reason, there are numerous different binary codes that may all represent the same thing. 

For instance, the ASCII code (American Standard Code for Information Interchange) 

utilizes a seven-bit string to represent 128 basic text characters, numbers, and control 

characters used in word processing. More recently, with the introduction of the Internet 

and globalization, a new code has been required to handle a vastly greater number of 

characters from languages throughout the world. Unicode was introduced to handle the 

vast number of characters and symbols now required for worldwide communication. It 

uses up to 24-bits and several encoding algorithms to achieve this. Clearly, a machine 

using ASCII codes would need some form of data conversion processing to understand 

Unicode, and vice-versa. In fact, many web pages containing foreign languages may not 

be displayed correctly depending on the Unicode support a given web browser allows. 

This laboratory experiment will be focused on data conversion, but nothing as 

complicated as ASCII to Unicode. When all that is required is to encode integers from 0 

through 9, encoding data becomes much simpler, although there are still a great number 

of different encodings that are possible. Binary Coded Decimal (BCD) is a code that uses 

four bits to represent each of the digits from 0 to 9. Each integer value is encoded directly 

in its binary form, producing several unused four-bit combinations. Excess-3 code is 

similar to BCD in that it uses a four-bit encoding for each integer value, however, when 

an integer is encoded, its value is first incremented by three, then converted to its binary 

form. The overall effect is to add three to all the Natural BCD codes. While Natural BCD 

encoding has six unused codes at the high end of the binary conversion (10 and above), 

Excess-3 BCD has three unused codes at the low end (2 and below) and three at the high 

end (13 and above). Table 1 shows the integer values from 0 through 9 and their 

corresponding Natural BCD and Excess-3 BCD encodings. 
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Decimal 
Natural BCD Excess-3 

A3 A2 A1 A0 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 1 1 

1 0 0 0 1 0 1 0 0 

2 0 0 1 0 0 1 0 1 

3 0 0 1 1 0 1 1 0 

4 0 1 0 0 0 1 1 1 

5 0 1 0 1 1 0 0 0 

6 0 1 1 0 1 0 0 1 

7 0 1 1 1 1 0 1 0 

8 1 0 0 0 1 0 1 1 

9 1 0 0 1 1 1 0 0 

Table 1 – BCD Codes 

 

3. Preliminary Design 
 

In this laboratory, two different code conversion circuits will be designed based upon 

the data encodings in Table 1. The first circuit will capture an input number from the user 

in Natural BCD form, and will output its Excess-3 BCD representation. The second 

circuit that will be built will perform both code conversion processes depending on the 

state of a selection input, SEL. When the selection input is low, the conversion will take 

in Natural BCD and output Excess-3 BCD, just like the first conversion circuit described 

above. However, when the selection input is high, this new circuit reads a number in 

Excess-3 BCD and outputs its Natural BCD counterpart. Figure 1 below contains block 

diagrams for both of these circuits. 

 

 
 

Figure 1 – Converter Circuit Block Diagrams. 
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 With the exception of not including the unused codes for Natural BCD, Table 1 above 

is essentially the truth table for the first circuit to be designed for this laboratory. Using 

this truth table, the logic functions for each output of the simple code converter can be 

relatively easily obtained and minimized using Karnaugh Maps. Recognize that the 

outputs for the Universal Code Converter depend on one more input, namely the select 

input, which makes Karnaugh Map minimization slightly more difficult than with the 

Simple Code Converter. Design of this circuit can be made easier, however, by 

recognizing that the select input simply chooses between two independent sets of 

functionality. 

 

Before coming to lab, you should: 

 

1. Develop the logic functions for each output of the Simple Code Converter. Create the 

full truth table, and minimize the logic using Karnaugh Maps or another preferred 

method of your choice. Be sure to capitalize upon DON’T CARE conditions where 

possible. 

 

2. Create the full truth table for the Universal Code Converter circuit. Be sure to include 

DON’T CARE terms where they apply. 

 

3. From this truth table, derive the logic functions for each output of the Universal Code 

Converter. Note that the truth table is identical to that for the Simple Code Converter 

when the select input is zero. You may, therefore, minimize only the half of the truth 

table corresponding to a select input value of one. The select input may then be used 

as a conditional check within an IF statement when the circuit is implemented. 

 

4. Bring the output logic functions for each of the two circuits to the laboratory where 

they will be implemented using VHDL code. The laboratory procedure will then 

discuss the steps for creating the necessary VHDL code, simulating both designs, and 

programming Spartan-3E Starter Kit board. 

 

4. In the Lab 
 

 The in-lab portion of this laboratory procedure is divided into two main parts: the 

Simple Code Converter and the Universal Code Converter. The procedure for the Simple 

Code Converter contains an in-depth walkthrough of project creation, simulation, and 

programming of the Spartan-3E Starter Kit board, in addition to the basic operations 

offered by the VHDL language that will be necessary to specify the functionality of the 

code converter itself. The procedure for the Universal Code converter will then introduce 

some additional operations offered by the VHDL language that facilitate a simplified 

specification of the expanded code conversion functionality. 
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4.1 The Simple Code Converter 

 

4.1.1: Starting a Project 

 

1. Begin by starting the Xilinx ISE Project Navigator software. If there is already a 

project running, close that project and create a New Project. This is done under the 

File drop-down menu, just like creating a new file in most other applications. 

 

2. In the dialog box that pops up, set the directory in which you would like all the files 

you will create to be saved, and enter the name of the project you would like to 

create. All the files created by the ISE tools will be placed in a file with the project 

name specified by you, which itself resides in the directory you picked. In the Top-

Level Module Type dropdown, ensure that HDL is listed, and hit Next >. 

 

3. In the next dialog box, under Device Family, select Spartan3E. Under Device, select 

xc3S500E, which specifies the type of Spartan-3E FPGA used on the board. Under 

Package, select FG320, which specifies the package type for the FPGA. Under Speed 

Grade, select -4, which specifies the speed grade of the FPGA. For the Synthesis Tool 

selection, XST (VHDL/Verilog) should be selected. The Simulator selection should 

be set to ISim (VHDL/Verilog). When all of these selections are verified, hit Next >. 

On the next window, hit Finish to conclude creating your project. 

 

4.1.2: Adding a VHDL Code Module to the Project 

 

4. From the previous steps, you should have a project created in the Project Navigator 

environment. In the Hierarchy in Design window on the upper left side of the screen, 

you will see a listing for the device you specified under the project name you entered. 

Right click the device object (xc3500e-4fg320) and select New Source from the pop-

up menu. 

 

5. From the selections provided, choose VHDL Module to create a new VHDL code 

segment. You will be prompted to enter a name for the file, and then you will be 

given a screen to enter input and output ports. Enter a port name for each input and 

each output for the Simple Converter, and select the direction (in or out) for each 

port. Click Next > to be given a summary of your VHDL module. 

 

6. Hit Finish and a window containing VHDL code will be created. Note that a .vhd file 

has been added to the device in the Sources in Project window of the Project 

Navigator. 
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4.1.3: Programming the Simple Converter 

 

7. Before doing anything else, look at the beginning of the VHDL code provided to you. 

Within the entity definition, you will see the port names you previously entered, 

followed by their direction and data type. 

 

8. Your code will be entered between the “begin” and the “end” statements in the 

architecture section of the VHDL code file created for you. Your logic functions may 

be entered in plain English. For instance: the statement 

Y3 = A3•A2  

 will be entered as: 

Y3 <= A3 AND A2; 

 

VHDL commands of note: 

 Combinational output assignment: output_signal_name <= assigned_value 

 Logical AND:    signal_1 AND signal_2 

 Logical NAND:    signal_1 NAND signal_2 

 Logical OR:    signal_1 OR signal_2 

 Logical NOR:    signal_1 NOR signal_2 

 Logical Inverse:    NOT signal_name 

 Logical Exclusive-OR:   signal_1 XOR signal_2 

 Logical Exclusive-NOR:   signal_1 XNOR signal_2 

 Comment Delimiter:   -- comment-text 

 

 It should also be noted that each line of code must be terminated with a semicolon (;), 

just as in C/C++. Using the commands listed above, you may enter the logic functions 

defining each output of the Simple Converter on your own. 

 

9. Save your VHDL file and synthesize it. This can be done by highlighting the .vhd file 

in the Hierarchy in Design window, and then double-clicking the Synthesize XST 

process in the Processes window on the lower left side bottom. The development 

tools will detect any coding errors during this process. 

 

4.1.4: Assigning Pin Numbers to Ports 

 

10. After synthesizing the completed VHDL file, pin numbers must be assigned to each 

input and output port for programming the Spartan-3E Starter Kit board later. To do 

this, expand the User Constraints and double-click the I/O Pin Planning(PlanAhead) 

– Post-Synthesis. This will start PlanAhead program. Click on yes on the window 

appearing to create a new constrain file. 

 

11. On PlanAhead application, you’ll see Netlist window on the upper left side of the 

screen. Click on I/O Ports tab on the bottom of Netlist window. Expand Scalar ports 

and select a port to assign pin. On I/O Port Properties window on the bottom of 

Netlist window, assign pin by typing pin location on the Site textbox. To confirm the 

pin assignment, click on Apply and the pin assignment will be done for the selected 
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port. Select each port and assign it a pin location (Loc column) based upon the table 

found in Appendix A of this laboratory manual. Pin numbers may be entered 

manually. 

 

12. After assigning pin numbers to each port, save the file and close PlanAhead program. 

Highlight the .vhd file in the Hierarchy in Design window and double-click the 

Implement Design process in the Processes window. This will map your design to the 

Spartan-3E device you selected. 

 

4.1.5: Simulating the Simple Converter 

 

Before going to further step, in order to simulate on ISim with VHDL Test Bench, you 

must have a clock variable declared on your VHDL Source File. Go to Port declaration 

on your VHDL source code, and type in [CLK : in std_logic;] in the port declaration. Port 

declaration can be found on the very first lines of your VHDL code, excluding the auto-

generated comments. 

 

13. In order to simulate the design you have entered, another new source must be added 

to the project. Right-click the device and add a New Source. Select VHDL Test 

Bench and give it a name different from the name of the VHDL file it will be testing. 

This naming difference is important so as not to confuse the simulator. As with the 

constraints file, the VHDL source to which the simulation file will apply must be 

selected in the next dialog box. Select your VHDL file, and finish creating the new 

file.  

 

14. A test bench VHDL file will be created with templates for your convenience. You can 

specify your own clock period, input values and more. To adjust the clock period, 

find where it defines a clock period constant. By default, the clock period is set to 

10ns. To adjust your input variables, find a comment where it says “insert stimulus 

here”. You can assign input variables here to simulate your implementation. 

Assigning method is identical to what we do for VHDL file. Test bench file itself is a 

VHDL file as well, so you should be comfortable with assigning test values to the 

input variables. What is important is to include a wait statement between two 

different test values. You should give at least one clock period wait statement in 

between them. Otherwise, your test will not work properly as expected. Once you are 

done writing your own test bench VHDL code, save it. 

 

15. To simulate your test bench, select Simulation radio button next to Implementation, 

on top of the Hierarchy in the Design window. Then, select the VHDL test bench file 

listed in the Hierarchy in the Design window. In the Processes window, expand the 

ISim Simulator and double-click the Simulate Behavioral Model Program. Before 

running ISim, right-click on Simulate Behavioral Model and click on Process 

Properties. Your simulation must fall into the Simulation Run Time specified on the 

pop-up window, to verify all of your test cases. Change Simulation Run Time if the 

default value is not enough to fulfill your test bench. ISim will start and the output of 

your design will be simulated for the input waveform that you specified. 
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16. A new window should appear. It will most likely have a black background with some 

white vertical lines cutting across it. In order to see the test results, find the Zoom to 

Full View button that should be on the left and on the top of the waveforms: 

 
 

17. To make checking the simulation results easier, a vertical cursor may be used. The 

values across all the input/output ports for the time at which the cursor is set will be 

shown in the column to the right of each port name. The cursor may be moved by 

clicking within the waveform at a point of interest. By holding the click from one 

point of interest to another, you can read the time elapsed between two events. 

 

18. When you are certain that the functionality of the Simple Converter is correct, you 

may exit the ISim simulator and proceed to programming the Spartan-3E Starter Kit 

board. 

 

4.1.6: Programming the Spartan-3E Starter Kit board 

 

19. To return to the implementation mode, select the implementation radio button. 

Double-click the Generate Programming File process and wait for the program to 

complete. After the program file is generated, expand the Configure Target Device 

process with the “+” next to it, and find the Manage Configuration Project 

(iMPACT) executable listed there. Ensure that the Spartan-3E Starter Kit board is 

connected to power and to your computer’s USB port and run this program. 

 

20. Depending on the version of your ISE, it may be different but the process is the same 

looking as a big picture. On the upper left on the screen, in iMPACT Flows window, 

double-click on Boundary Scan. Right-click on the right side of the window where 

it says “Right click to Add Device or Initialize JTAG chain”, then click on 

Initialize Chain. On the pop up window, go to your project’s folder (directory) and 

find your_project_name.bit file and open it. This step is very critical. If you select a 

bit file other than your current project, it may not behave as you desired. In fact, this 

will load completely different program to the Spartan3E FPGA board. If the program 

prompts you whether you want to attach an SPI or BPI PROM to this device, click 

on No. Click on Bypass for the next two pop up window and hit OK on Device 

Programming Properties window. 

 

21. After choosing the configuration file to be used, the program will present you with an 

icon representing the .bit programming file that was generated from your code. This 

icon usually sits on the very left side. Right-click this icon and select Program. The 

board should program, allowing you to test the functionality of your Simple 

Converter circuit physically, with a success message on the screen. 

 

22. Show the lab instructor your functioning circuit before proceeding to the next section 

of this laboratory. 
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4.2 The Universal Code Converter 

 

 Much of the basic work for the Universal Code Converter is the same as for the 

Simple Converter; so, if there are any questions about how to proceed beyond the 

instruction given here, see the previous section of this laboratory procedure. 

 

23. Open a new project and add a VHDL module to it. The main difference between this 

circuit and the Simple Converter is the addition of the select signal to change the 

functionality. While the output functions could be found using five variable Karnaugh 

Maps, the selectable nature of this circuit lends itself nicely to the use of IF 

statements. 

 

24. In order to use IF statements, they must be nested within a PROCESS declaration. To 

make your code into a process, between the “begin” and “end” statements of the 

architecture code (where your functionality was entered for the Simple Converter); 

enter PROCESS followed by all the input signals in parentheses on the same line. On 

the next line, enter BEGIN, then leave a few lines of space and finally enter “END 

PROCESS;” to complete the process. The result should appear as follows: 

 

PROCESS (input_signal1, input_signal2, input_signal3, …) 

BEGIN 

 

END PROCESS; 

 

25. In the empty space you left, an IF statement may be entered. The basic format for an 

IF statement in VHDL is as follows: 

 

IF condition check THEN 

 Sequence of Statements 

ELSIF condition check THEN 

 Sequence of Statements 

ELSE 

 Sequence of Statements 

END IF; 

 

  

 Similar to programming in C/C++, an IF statement is not required to have an 

accompanying ELSEIF or ELSE statement, however, every IF statement must have 

an accompanying END IF to close the functionality. In addition, multiple condition 

checks may be done within a single IF statement through the use of standard VHDL 

logical operators, such as AND or OR. 

 

 The following operators may be used in the condition check statement: 

 

 Equal To:    signal_name = ‘bit_value’ 

 Less Than:    signal_name < value 
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 Greater Than:   signal_name > value 

 Less Than or Equal To:  signal_name <= value 

 Greater Than or Equal To: signal_name >= value 

 

 If the input signal is being compared to a logic value, this value must be surrounded 

by single quotes for the synthesizer to interpret its meaning correctly. For the 

Universal Code Converter, you will be checking the value of the select input signal. 

When this signal is zero, the sequence of statements implementing the BCD to 

Excess-3 conversion should be executed. When the signal is one, the Excess-3 to 

BCD conversion code should be executed instead. Enter the code for both 

conversions under the appropriate portions of your IF statement and save your VHDL 

file. 

 

26. Synthesize your design to check for coding errors, and assign pin numbers to the 

ports on your new program. 

 

27. Modify previous test bench VHDL file to this project and set up your test plan. 

Simulate your Universal Code Converter circuit using ISim to verify the proper 

functionality. If your circuit does not function as expected, correct the VHDL code 

and run the simulation again. 

 

28. When the simulation provides the results you expect, generate the programming file 

and download it to your Spartan-3E Starter Kit board for physical testing. 

 

29. Verify the circuit functions as required when the select signal is both high and low. 

When your circuit is functioning correctly, show the lab instructor its operation. 

 

 

5. References 

 

Additional information about ASCII code may be found at the following website: 

www.asciitable.com 

 

Additional information about Unicode may be found at the following website: 

www.unicode.org 

 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment  2: 

Four-Bit Ripple-Carry Adder/Subtractor 
 

1. Purpose 
 

 In this lab, you will design and program a four-bit ripple-carry adder/subtractor 

circuit using modular design techniques.  All of the necessary VHDL coding concepts 

and procedures will be introduced in the laboratory and implemented by the 

experimenter. 

 

2. Background 
 

 Some circuit designs lend themselves very well to expansion through replication of 

basic processing elements.  The ability of a circuit to be expanded through replication 

depends very much on the nature of the problem that the circuit is solving.  If the problem 

itself allows for partial results calculated from subsets of the full input to be combined to 

get the correct answer, this type of expandability is often possible.  It is frequently easier 

to replicate the design of a circuit that processes a small subset of a large input set and 

combine the individual results, than it is to design a single circuit to manipulate the full 

data set. 

 One such circuit that may be easily expanded in this way is the ripple-carry adder.  

By tying single-bit full-adder circuits end-to-end, a ripple-carry adder of any size may be 

constructed.  All that is necessary to achieve the proper functionality is to tie the carry-

out port of each block to the carry-in port of the next block, forming a chain.  Then, by 

providing corresponding operand bits to each adder block, the final sum can be calculated 

bit-by-bit along the chain.  The following table contains the truth table for a single-bit 

full-adder circuit. 

 

Carry-In A B Sum Carry-Out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Table 1 – The truth table for the single-bit full-adder. 

 

 A major point in favor of the VHDL language is that it supports modular circuit 

design very simply and effectively through a hierarchical design practice.  The module to 

be replicated is first coded in VHDL, allowing its functionality to be tested independently 

of all other portions of a larger design, similar to a function in C/C++.  A higher level 

VHDL module may then reference these lower level sub-modules by including their code 
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in the larger project.  The functionality of the component may then be accessed by 

passing it an input signal set and utilizing the output signals it generates in turn. 

 You may recall that a ripple-carry adder circuit, such as the one described earlier, can 

be quite easily made into an adder/subtractor circuit through the introduction of some 

strategically placed XOR gates and the introduction of an operation select signal.  This 

circuit requires one XOR gate for each single-bit adder block, whose output is tied to one 

of the operand inputs of the block.  One of the XOR inputs is tied to the operand bit that 

is either added to or subtracted from the other operand, while the other input is tied to the 

operation select signal.  When the operation select is logic low, the XOR gates have no 

effect on the operand tied into the other input, so the gates effectively act as buffers.  

When the operation select input is logic high, however, each of the XOR gates act as an 

inverter for the operand bit tied to the gate.  In this way, we have constructed a circuit 

that either adds two multi-bit operands, or performs a one’s-compliment subtraction 

operation, depending on the setting of the operation select input.  To complete the design 

and produce two’s-compliment subtraction, the operation select input can also be tied to 

the carry-in input port of the first adder in the chain.  This is the design that will be 

implemented in this laboratory, and is illustrated in the following schematic: 

 

 
Figure 1 – The schematic diagram for the four-bit ripple-carry adder/subtractor circuit. 

 

3. Preliminary Design 
 

 The preliminary design for this laboratory experiment is fairly straightforward.  Use 

any method you choose to develop Boolean equations for the outputs of the one-bit full-

adder, the truth table for which is shown in Table 1.  In addition, the external XOR gate 

should be included in each block to make the design of the complete four-bit circuit 

easier.  This may be done quite simply using the Boolean equations for the standard one-

bit adder.  Every time the B input appears in one of the equations, it may be replaced with 

the following: 

(B  op_sel) 

 

Before coming to lab, you should: 

 

1. Develop the output logic equations for the one-bit full-adder circuit using the truth 

table provided above. 
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2. Replace every occurrence of input B in your logic equations with the logic expression 

shown above.  This will incorporate the XOR gate that is shown externally to each 

adder block in Figure 1 into the adder block itself, and will make cascading the blocks 

together easier. 

 

3. Write a VHDL file that will implement your one-bit adder/subtractor module and 

bring it to the laboratory.  Be sure to include input and output ports for both operand 

bits A and B, the operation select input, the carry-in, the carry-out, and the resulting 

sum in your design. 

 

4. In the Lab 
 

 The primary goal of this laboratory procedure is to introduce the experimenter to the 

concepts of modular VHDL programming.  To that end, this laboratory procedure will 

detail the new VHDL coding concepts required to implement the modular design, and 

will not focus on the usage of the ISE programming environment itself.  If you have any 

questions regarding the basic operation of the development environment, please see one 

of the Xilinx ISE tutorials or a previous laboratory experiment detailing what you require. 

 The VHDL language allows for straightforward programming with all necessary code 

included in the definition for a single entity, as has been used up to this point; however, 

this only scratches the surface of the language capability.  Much like a high-level 

computer language allows for functions to encapsulate sections of code, VHDL allows 

for the creation of sub-entities containing their own code.  The code in these entities is 

then executed based upon passed in input values and produces results that are assigned to 

output signals.  This can allow a large design to be broken down into more manageable 

parts, and can make an insurmountable task much more straightforward.  This laboratory 

procedure will walk you through the process of creating these sub-entities and through 

the process of introducing internal signals that may become necessary when connecting 

system components together. 

 

1. When you get to the lab, open the Xilinx ISE Project Navigator and create a new 

project. 

 

2. Add the file for the one-bit adder/subtractor you created earlier to the device in the 

Sources in Project window.  This can be done in a similar fashion to creating a new 

VHDL module, however, instead of selecting New Source, select Add Source and 

choose the file you wish to add to the project.  It is recommended to name this file 

something like adder1 to let you know that it is a one-bit adder/subtractor. 

 

3. When you have finished adding your file to the project, simulate it using ISim to 

verify that it functions as you expect.  It is important that you fully test this file, 

because it will act as a sub-component for a larger project later, which could be 

difficult, if not impossible to fully test using all the possible input combinations. 
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4. When you are satisfied that the code you have developed works successfully, create a 

new VHDL code file in the main project, and name it something like adder4 to 

indicate this will be a four-bit adder.  This file will contain the higher-level code for 

the four-bit version of the adder/subtractor.  Remember, with this file, there will be 

four input ports for each operand, an input for the operation select signal, four output 

ports for the sum, and an output port for the final carry-out. 

 

5. When the skeleton for the new VHDL file is created for you, you must let the 

program know that the one-bit adder in the other VHDL file will be used within this 

new file.  The single-bit adder must be added as a component within the four-bit 

adder VHDL file.  Declaration of components is done immediately following the 

architecture definition line in the new VHDL code.  It consists of declaring the 

component name as the name of another VHDL entity in the project, listing the input 

and output ports of the sub-component, and ending the component definition.  An 

example of the code required to do this is shown below: 

 

architecture name of current VHDL entity is 

 component entity name of sub-component (i.e. adder1) 

  Port(inport1, inport2, …, inportN : in std_logic; 

  outport1, outport2, …, outportN : out std_logic); 

 end component; 

 

6. The next step in the process of creating the four-bit adder is to create some internal 

device signals.  These signals will be used to tie the carry-out of one adder block to 

the carry-in of the next.  Since these signals do not need to be sent to the outside 

world, there is no need to assign ports to them; instead they may be handled 

internally.  There are three of these internal connections required, since the first carry-

in is tied to the operation select input, and the last carry-out is sent to an output port 

for viewing.  Internal signals, like the component definitions, go between the 

“architecture” statement and the “begin” statement signaling the start of the VHDL 

code.  Declaring internal signals may be done using the following command: 

 

signal signal1, signal1, …, signalN : std_logic; 

 

 Remember, you will need three of these internal signals for this design.  You may 

name them however you wish. 

 

7. The final step in creating the four-bit adder is to actually add the four single-bit 

adders to the new file, and connect them together to obtain the proper functionality.  

When a component is instantiated in a VHDL code segment, it must be given a 

component name followed by a colon and the entity name of the component.  A port 

mapping of signals in the high-level design to component inputs and outputs must 

then be made for each sub-component in the design.  Ports are assigned to each 

component in the same order that they were listed in the component declaration 

earlier.  Any signal in the high-level VHDL entity may be assigned to an input or 

output port of the lower-level entity.  You may now add four single-bit adder 



Laboratory Experiment 2-5 

 

components to your design, and assign the input and output ports similarly to the 

following code segment: 

 

 componentName1 : entityName 

  port map (signalToInport1, signalToInport2, …, signalToInportN, 

     signalToOutport1, signalToOutport2, …, signalToOutportN); 

 componentName2 : entityName 

  port map (signalToInport1, signalToInport2, …, signalToInportN, 

     signalToOutport1, signalToOutport2, …, signalToOutportN); 

  . 

  . 

  . 

 componentNameN : entityName 

  port map (signalToInport1, signalToInport2, …, signalToInportN, 

     signalToOutport1, signalToOutport2, …, signalToOutportN); 

 

 Remember that the signals should be listed in the port mapping statements reflecting 

the same order as the input and output ports listed in the component declaration 

statement.  It should also be noted that several different kinds of components may be 

added to a single VHDL file, and they are distinguished in the code above by using 

different entity names. 

 

8. Save your new file and look at the Sources in Project window.  If you have done 

everything correctly, you should notice that your one-bit adder VHDL file is now 

nested below the four-bit adder VHDL file.  This means that your new file utilizes the 

code in the previous file in part of its functionality. 

 

9. Assign pin numbers to the input and output ports in your design.  Since you will need 

all eight switches for the two operands, you may use one of the push-button switches 

for the operation select input. 

 

10. Synthesize your design to ensure that you have no syntax errors.  If you have errors, 

fix them and re-compile your design.  When you have no syntax errors, generate the 

programming file for your design in preparation for programming the Spartan-3E 

Starter Kit board. 

 

11. Program your Spartan-3E Starter Kit board with your four-bit adder/subtractor and 

ensure that the circuit functions as you expect in both the addition and subtraction 

modes.  Remember, the carry-out output is only useful when using the addition 

functionality of the circuit.  This value will often have no meaning when using the 

subtraction functionality.  The final result of the subtraction is contained in the four 

bits of the sum, and is shown in two’s-compliment form.  When your design functions 

properly, show your lab instructor its behavior. 

 

12. If you do not wish to have multiple files containing your code, any code for sub-

entities may be copied into the file that will be using them.  This localizes all the code 
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in a single file, but makes the VHDL harder to read due to the clutter.  You may use 

whichever method you prefer.  However, if you combine all the code in a single file, 

you may need to replace all the “std_logic” signal types with type “bit” in order for 

the compiler to function properly. 

 

5. References 

 

For further information on digital logic design, consult: 

1. Mano, Morris M.  Digital Design.  New Jersey: Prentice Hall. 

2. Wakerly, John F.  (2001).  Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 3: 

Hazards and Glitches 
 

1. Purpose 
 

 In this lab, you will learn about the transient behavior of certain digital logic circuits, and will 

gain experience using the logic analyzer to observe the output of a circuit immediately following 

an input transition.  In order to achieve this, the circuits for this laboratory will be made using 

discrete components, rather than the Spartan-3E Starter Kit board. 

 

2. Background 
 

 A glitch is an unwanted transient pulse at the output of a combinational circuit, and a circuit 

with the potential for a glitch is said to have a hazard.  Not all designs will produce glitches, 

however, if the timing of a circuit is of critical importance, the potential for glitches must be 

considered and their presence may be corrected.  In order to see examples of glitches, the logic 

analyzer will be required.  The operational instructions for the Agilent MSO6032A Logic 

Analyzer may be found at the end of this laboratory experiment. 

 

2.1 A Circuit with a Static-1 Hazard 

 

 Consider the four variable Boolean function F(A,B,C,D)=(1,3,5,7,8,9,12,13).  The 

Karnaugh map for this function is shown below: 

 
 

Figure 1 – The Karnaugh map for the specified Boolean function. 

 

The minimized sum of products form for this function is: 
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The following figure shows a physical implementation of this function. 

 

 
 

Figure 2 – Circuit implementing the specified logic function. 

 

 In order to observe the glitching behavior of this circuit, the output of the circuit may be 

examined for several input transitions.  First, the input data may be changed from ABCD = 1100 

to ABCD = 1101.  When the inputs are 1100, the output of gate G1 is 1 while G2’s output is 0, 

forcing the output from G3 to be 1.  When the input data changes by a single bit to 1101, the 

output of gates G1, and hence, G3 do not change, therefore, a glitch will not occur for this input 

transition.  Now consider another single-bit change in the inputs to the circuit, from 1101 to 0101.  

When A goes low, A’ will become high, but only after a gate delay for an inverter, meaning that 

for a short time, both A and A’ are low.  This allows the outputs from G1 and G2 to be low at the 

same time and forces F to go low.  When A’ finally becomes high, G2 will go high and F will 

return to the correct value of 1.  This situation illustrates a static-1 hazard in the circuit design. 

 

2.2 Correction of a Circuit to Prevent Hazard Conditions 

 

 In order to remove hazards in a circuit design, redundant prime implicants must be included 

to connect any adjacent, but separate, implicants that are already necessary for the design.  It is 

up to the circuit designer to decide which product terms should be added to the sum-of-products 

function, F, in an effort to eliminate hazard conditions. 

 

3. In the Lab 

 

1. Using the logic analyzer, find the propagation delay for an inverter in a 74LS04 chip.  Attach 

the input for the inverter to a clock signal.  Connect the Channel 0 probe of the logic analyzer 

to this clock signal, and attach another channel probe to the output of the inverter.  Use the 

clock signal input for the inverter to trigger the logic analyzer. 

 

2. Construct the circuit shown in Figure 2 of the Background section of the laboratory using 

discrete components.  Repeat the observation from Step 1 above with one of the inverters in 

this circuit.  Has the propagation delay of the inverter changed and why? 

 

3. Confirm the existence of the glitch discussed in the Background section of this laboratory by 

providing the circuit with the input transition 1101 to 0101. 

 

4. Construct a version of the circuit that does not exhibit any hazard conditions.  Provide this 

circuit with the same input transition from Step 3 above, and display the outcome on the logic 

analyzer. 

 

A 

C 

A 

D 

F 

G1 

G2 

G3 



Laboratory Experiment 3-3 

 

 

Notes: 

 

 The glitch duration that should result for the circuit being analyzed is very small, on the order 

of a single inverter delay.  In order to see these glitches, the maximum sampling rate for the 

logic analyzer should be in the range of 2 – 5 ns. 

 Logic analyzers are typically used to debug sequential circuits, and their trigger conditions 

need to be sequential clock or input transitions.  Since the circuit being analyzed for this 

laboratory is combinational, a clock signal should be used to generate the desired input 

transition for input A. 

 

4. References 

 

For further information on digital logic design, consult: 

1. Mano, Morris M.  Digital Design.  New Jersey: Prentice Hall. 

2. Wakerly, John F.  (2001).  Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Logic Analyzer Familiarization 
 

1. Background 
 

 You have already become familiar with the use of an oscilloscope for displaying voltage 

versus time.  The oscilloscope can be used as a tool for logic circuits as well as analog circuits, 

since different voltage ranges represent different logic values.  The biggest drawback of doing 

this is that oscilloscopes have a limited number of channels.  In complex logic circuits, we may 

want to observe several signals simultaneously. 

 Logic analyzers alleviate this problem.  They display logic values that represent the value of 

digital signals versus time.  Logic analyzers can display several of these signals simultaneously, 

making them ideal for debugging complex circuits.  Logic analyzers are no substitute for an 

oscilloscope when debugging tricky analog problems because they can display only logic one and 

zero values.  However, they excel when you are attempting to debug complex sequential circuits. 

 Logic analyzers operate by repeatedly sampling data inputs and temporarily storing them 

while searching for a trigger condition.  If no trigger condition is detected, stored values are 

overwritten by new values as they are sampled.  If the trigger condition is detected, then the 

stored data is shown on the display so that the user can see the values of the signals before, 

during, and after the trigger condition.  In the logic analyzer, these values are displayed as traces 

similar to an oscilloscope’s traces.  The traces can be formatted to display binary, octal, 

hexadecimal or user-defined values. 

 A major advantage of logic analyzers is that they can collect this data at high speed, making it 

possible to test circuits at full clock speed where errors are likely to occur.  Logic analyzers are 

extremely useful when debugging sequential circuits, which may contain many signals that 

change at different times.  Examining the signals with a logic analyzer allows you to see if the 

circuit is behaving properly and, if not, to isolate the source of the problem.  Unlike an 

oscilloscope, which triggers only on a single signal, logic analyzers can trigger on patterns of 

multiple inputs, making it possible to specify exactly the sequence of events that you wish to 

examine.  Figure 1 shows a diagram of the Agilent MSO6032A logic analyzer’s front panel.  

Notice the similarity between its controls and controls on an oscilloscope.  This similarity is 

intentional to make the logic analyzer easy to learn and use. 
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Figure 1 – Agilent MSO6032A front view 

 

 

Figure 2 – Agilent MSO6032A back view. 
 

2. Logic Analyzer Basics 
 

 There are 16 channel probes connected to the back of the logic analyzer via a ribbon cable.  

The probes are grouped together into two pods of eight probes, and each probe has a unique 

number between 0 and 15 that corresponds to its channel number. There is also a ground probe 

connected to each pod that should be attached to the circuit’s ground. 

 Each probe is connected to a micrograbber.  The micrograbber is used to attach to wires or 

integrated circuit pins.  Please be gentle using the probes and micrograbbers - they are easy to 
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break.  Always use micrograbbers - do not insert wires directly into the probes since this may 

damage the springs inside them. 

 To connect a probe to test your circuit, first turn off the power, then connect the micrograbber 

to the circuit in one of the following ways: 1) to the end of a short piece of wire inserted into the 

breadboard at your test point or 2) connect the micrograbber directly to an integrated circuit pin.  

Be careful to avoid shorting two pins together though.  It is important to turn off the power so 

you do not short out your circuit when making the connections.  Figure  shows an example of 

connecting the micrograbbers to a circuit under test. 

  

 

Figure 3 - Micrograbbers Attached To Circuit Under Test. 

 

 The controls on the front panel of the logic analyzer can be divided into the following groups: 

softkeys, channel, horizontal, trigger, storage, and general controls. 

 

Softkeys are located at the bottom on the display and are used in conjunction with other controls.  

A legend will appear at the bottom of the display above each softkey describing its function 

depending on what other controls are in use. 

 

Channel controls are used to select which channels will be displayed.  Turn the Channel Select 

knob to position the desired channel on the display.  You can assign a label instead of the channel 

name by pressing the label button and entering a name.  The on/off button is used to add or 

remove a selected channel to or from the display.  The position knob is used to move the position 

of a selected channel up or down with respect to the other display channels.  The label button is 

used in conjunction with softkeys to label different channels with signal names. 

 

Horizontal controls adjust the time scale and a delay from the trigger point to the display.  The 

time/div knob controls the time scale.  Turning this knob counterclockwise lengthens the scale up 

to a maximum of 1 second per division, while turning it clockwise shortens it to a minimum of 

2ns/division.  The trigger time of each trace is shown at the center of the display with an equal 

time before and after the trigger.  The delay knob can be used to shift where the center point is 

displayed.  This is used to scroll the time axis and display output before and after the trigger. 

 

Trigger controls select how the logic analyzer captures data.  Triggers can be specified in three 

ways.  When the Edge button is pressed, the softkeys allow you to select a channel and an edge 

type of rising↑, falling↓, or glitch↕.  This is similar to oscilloscope triggering.  When the Pattern 
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button is pressed, the softkeys allow you to specify a multiple bit pattern.  Each displayed input 

can be specified as a high, low or don't care value using the softkeys.  Any time the inputs match 

this condition the logic analyzer is triggered.  This is especially useful when debugging complex 

sequential circuits.  The Adv button allows the specification of more advanced triggers.  The 

Agilent MSO 6032A manual describes these in detail. 

  

Storage controls determine how data is collected and stored.  The Run/Stop key is used to turn 

the collection of data on (Run) or off (Stop).  Pressing the Run button once causes the logic 

analyzer to continuously wait for a trigger and display data each time a trigger is encountered.  

Pressing it a second time stops this process.  The Single key waits for a trigger condition once 

and display the result.  This is useful when you want to see what happens in response to a single 

trigger event rather than repeated triggers.  The Auto-Store button places the logic analyzer into a 

mode that displays values for previous traces at half brightness while the current trace is 

displayed at full brightness.  This can be used to see what happens over multiple occurring 

events. 

 

General controls are used to set up what is displayed.  You can modify the display and measure 

time between events.  The Measure Time button allows you to measure time between events.  

The Save/Recall buttons work with softkeys and allow you to save configurations and restore 

them.  You will often use these buttons in conjunction with the Default softkey to set the logic 

analyzer to display all channels.  The Autoscale button is particularly useful because it will 

configure the logic analyzer to display all channels on which inputs are active and will guess an 

appropriate time scale.  This is useful for quickly setting up the display, but it will not display 

channels on which there is no activity.  On the bottom left of the display, there is a row of dashes 

and/or arrows.  An up-down arrow indicates activity on a particular probe channel, whereas, a 

dash does not. 

 

The channel inputs include the probe connector and Logic Levels button.  This button allows you 

to specify which logic family you will be debugging.  This should be kept to the default value key 

TTL, which is the logic family we are using in this course.
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Figure 4 - Front Panel Controls. 
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Laboratory Experiment 4: 

Error Correcting Codes 
 

1. Purpose 
 

 In this laboratory, the experimenter will be introduced to the concepts involved with 

error correcting codes. In particular, this experiment utilizes a Hamming Code to detect 

and correct single bit errors in a data transmission.  

 

2. Background 
 

2.1 Error Detection and Correction Codes 

 

Whenever data is transmitted from one location to another, either between 

components in a single system or between separate computers, ensuring that the data 

arrives at its destination error free is of critical importance. As a set of data is being 

transmitted over some form of communication line, ambient electronic noise may cause 

one or more bits in the transmission to become corrupted. Often, this corruption takes the 

form of a bit flip, either from a one to a zero, or vice versa. The probability of one such 

error occurring for an individual bit in a given transmission is very small, but as the size 

of the transmission increases, so does the probability of a bit flip occurring somewhere in 

the transmission. Detecting and/or correcting these bit flips is the goal of every error 

detection and correction code. 

With both types of coding, extra bits are added to the end of a block of data for 

transmission. Before the data is sent over the communication line, these bits are encoded 

at the sender using some agreed upon algorithm. When the data block arrives at the 

receiver, the extra bits may be examined using another algorithm to check if some form 

of data corruption took place in the transmission. Figure 1 below shows a basic block 

diagram for the functionality of the encoder and error detector circuits at the sending and 

receiving systems. 

 

 
 

Figure 1 – Encoding and decoding of an error detection/correction code. 
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There are two schools of thought when it comes to error detection/correction codes. 

The first uses the extra bits attached to the data message to simply detect if an error 

occurred in the transmission. These codes are called error detection codes, because if an 

error is found in the transmission, the only way to get the correct data is to request a 

retransmission from the data source. One simple error detection code is the even or odd 

parity code. An even parity uses the XOR of all the bits in the data being sent to generate 

a parity bit. If the number of ones in the data being sent is even, the parity bit will be 

zero, however, if the number of ones in the data is odd, the parity bit will be one. An even 

parity function adds a one to the end of the data being sent if it is required to make the 

total number of ones sent an even number. An odd parity function works similarly, 

however, a one is added to the end of the data being transmitted if it is necessary to make 

the total number of transmitted ones odd. When the transmission is received, the total 

number of ones that have been received may be checked to see if it is an even or odd 

number. For an even parity, if an odd number of ones are received, something went 

wrong during the data transmission. 

Since parity functions, such as the ones described above, rely on checking if the 

number of ones received is even or odd, multiple bit flips may go unnoticed. For instance, 

if a zero is changed to a one and a one is also changed to a zero in the same transmission, 

the error will go undetected, as the overall number of ones remains unchanged. Similarly, 

adding or removing ones in multiples of two will also not be detected by this code. For 

this reason, more complex error detection codes have been developed, such as the Cyclic 

Redundancy Check (CRC), which can detect multi-bit errors, but requires more than a 

single bit to be added for each transmission. 

When it comes to error detection/correction codes, the other school of thought is why 

stop at simply detecting an error when it occurs. It would be ideal to not only detect an 

error, but also to fix the error at the receiver, so as not to require retransmission of the 

data that was just received. These error-correcting codes also use extra bits added to the 

end of a transmission that are encoded based upon the data being sent, however, the 

encoding of these bits is a little more complex and allows for the locations of some types 

of errors to be determined so that they may be corrected. 

One such error-correcting code is Hamming Code, which uses parity bits interspersed 

throughout the data being transmitted to detect all 1-bit errors. Whereas, 1-bit errors 

could be detected with a single bit using a simple parity function, in order to correct the 

errors, more bits are required. For an N-bit message, M parity bits will be required, such 

that M is given by the following formula: 
 

   ⌈            ⌉ 
Equation 1 

 

By adding M bits to the transmission, there are N + M possible ways to get a single bit 

error, and there is one way to get no error at all. The number of parity bits used must be 

able to represent this number of error/no error conditions; hence, M can be determined by 

the ceiling of the log function given in Equation 1. When the message is received, the 

parity bits may be used to calculate the location of a bit flip, if one occurred during the 

transmission. 

When using Hamming Code, each bit position in the transmitted data (including all 

the parity bits) is assigned a decimal value, from one onward, for the entire length of the 
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message. The parity bits are placed at locations corresponding to powers of two in the 

transmission. Each parity bit is then calculated as a standard even parity of a subset of the 

total transmission data. When the data is received, a standard even parity error detection 

circuit may then be used for the appropriate data elements and the parity bit itself to 

check if an error occurred in the transmission. 

For example, consider a data transmission size of 8-bits. According to Equation 1 

above, the number of parity bits required for the Hamming Code is four. The placement 

of the data bits (Di) and the parity bits (Pi) in the resulting 12-bit Hamming Code would 

then be as follows: 

 

Bit Position B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

Coded Data P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8 

 

The binary bit position of each parity bit will have a one in only a single location. 

Each parity bit is then calculated based upon the bits in the message that also have a one 

in the same location as the parity bit. For instance, parity bit P1 would be calculated based 

upon the message bit locations 3, 5, 7, 9, and 11. The following logic equations may be 

used to calculate the values of each of the parity bits: 

 

 

 

                            

                             

                       

                         

 

When all 12 bits of the transmission are received, the message must be checked for 

errors. This can be done through the generation of four check bits obtained using the 

equations shown above. Consider this, by XOR’ing both sides of each equation shown 

above with the value on the left side of the equal sign, the parity bit is added to the 

formula on the right, and the left side is reduced to zero. Therefore, when no transmission 

errors occur, all the results of these new functions will be zero. However, if an error 

occurs in one of the bit locations of the transmission, ones will be generated by each of 

the functions containing that bit location. The number that results from calculating all the 

check bits in this manner indicates the location of any single bit flip in the transmission. 

In summary, the computation of the check bits may be done according to the following 

formulas: 
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Remember when the check bit result is C8C4C2C1 = 0000, this means that no error 

occurred in the transmission. However, when an error has occurred, the resulting check 

bit number will contain the location of the bit flip so that it may be corrected. 

 

3. Preliminary Design 
 

In this laboratory experiment, you will design and implement Hamming Code circuits 

for both four and eight bits. The eight-bit Hamming Code is discussed in detail in the 

Background section of this laboratory. The four-bit Hamming Code uses the following bit 

positioning: 

 

Bit Position B1 B2 B3 B4 B5 B6 B7 

Coded Data P1 P2 D1 P4 D2 D3 D4 

 

The parity bits may be calculated using the following formulas: 

 

 

 

                 

                 

                 

 

 

The check bits may be calculated using the following formulas: 

 

 

 

                      

                       
                       

 

Each Hamming Code circuit will consist of three parts. The first is the parity 

generator circuit that takes in the data bits you provide and calculates the appropriate 

parity bits to be transmitted. In the receiving side of the transmission, you will design a 

check bit generator circuit, as well as an error corrector circuit that uses the check bit 

number to correct any single bit errors. Figure 2 below shows a block diagram of the 

circuit elements and interconnections required to achieve error detection and correction 

using Hamming Code. 
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Figure 2 – Block diagram for the four-bit Hamming Code circuit. 

 

Before coming to lab, you should: 

 

1. Design an implementation of the four-bit Hamming Code parity generator circuit 

shown in Figure 2 above using standard TTL logic components. Draw a schematic 

diagram of your implementation, including pin numbers and package reference 

designators, and hand this in at the beginning of the laboratory. How many individual 

packages are required for your design? 

 

2. Compose a VHDL module that will achieve the four-bit parity generation 

functionality you designed into the circuit in Part 1 above. Hand in a printout of this 

file at the beginning of the laboratory. 

 

3. Calculate an estimate for the number of individual packages that would be required to 

implement the eight-bit parity generation functionality using standard TTL logic 

components. Due to the size of this circuit, you do not need to actually draw the 

schematic. 

 

4. Compose a VHDL module that will achieve the eight-bit parity generation 

functionality previously discussed in the Background section of this laboratory. Hand 

in a printout of this file at the beginning of the laboratory. 

 

5. Using standard TTL logic components, design an implementation of the four-bit 

Hamming Code check bit generator circuit shown in Figure 2 above. Draw a 

schematic diagram of your implementation, including pin numbers and package 

reference designators, and hand this in at the beginning of the laboratory. How many 

individual packages are required for your design? 

 

6. Compose a VHDL module that will achieve the four-bit check bit generation 

functionality. Hand in a printout of this file at the beginning of the laboratory. 

 

7. Calculate an estimate for the number of individual packages that would be required to 

implement the eight-bit check bit generation functionality using standard TTL logic 
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components. Again, due to the size of this circuit, you do not need to actually draw 

the schematic. 

 

8. Compose a VHDL module that will achieve the eight-bit check bit generation 

functionality previously discussed in the Background section of this laboratory. Hand 

in a printout of this file at the beginning of the laboratory. 

 

9. Design a circuit that will implement the four-bit error correction functionality shown 

in Figure 2 above. You do not need to correct errors in the parity bits of the message. 

You may design this circuit using standard TTL logic components, or you may 

implement it using a VHDL code module. If you use standard TTL components, you 

may wish to use a decoder circuit to get a single output from the check bit number, 

and you may then use XOR gates as selectable inverters. If you decide to use standard 

TTL logic components for your circuit, draw a schematic diagram including pin 

numbers and package reference designators, and hand this in at the beginning of the 

laboratory. If you decide to use a VHDL module for your circuit, hand in a printout of 

your code at the beginning of the laboratory. 

 

10. Design a circuit that will implement the eight-bit error correction functionality for the 

8-bit Hamming Code. Again, you do not need to correct errors in the parity bits of the 

message. You may use either standard TTL logic components or a VHDL module to 

implement your design, but because of its size, a VHDL module is recommended. 

Hand in a copy of your design at the beginning of the laboratory. 

 

4. In the Lab 
 

 In this laboratory, the Spartan-3E Starter Kit board will be used to implement and test 

both the four and eight-bit Hamming Code circuits that you developed in the pre-

laboratory exercises. 

 

4.1 Four-Bit Hamming Code 

 

1. Simulate the VHDL code module corresponding to the four-bit parity generator 

circuit. Verify its functionality before proceeding to the next step in the laboratory 

procedure. 

 

2. Compile the four-bit parity generator module and program it to your Spartan-3E 

Starter Kit board for physical testing. When you are sure that the functionality of your 

circuit is correct, show your lab instructor its behavior. 

 

3. Simulate the VHDL code module corresponding to the four-bit check bit generator 

circuit. Verify its functionality before proceeding to the next step in the laboratory 

procedure. 

 

4. Compile the four-bit check generator module and program it to your Spartan-3E 

Starter Kit board for physical testing. Calculate the correct transmission sequence for 
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a four-bit data block of your choice and provide this to your circuit. The check bit 

number that results should be zero. Now change a single bit in the data you are 

feeding into the circuit. The resulting check bit number should reflect the number of 

the bit that you altered. When you are sure that the functionality of your circuit is 

correct, show your lab instructor its behavior. 

 

5. Build or simulate the four-bit error corrector circuit and verify its functionality. 

Connect all three blocks of the four-bit Hamming Code circuit together on the 

Spartan-3E Starter Kit board and ensure that they function properly. Fully test the 

functionality of your circuit by purposely inserting errors into the transmission 

between the parity generator and the check bit generator blocks. When you are sure 

that your circuit functions correctly, show your lab instructor its operation. 

 

4.2 Eight-Bit Hamming Code 
 

6. Simulate the VHDL code module corresponding to the eight-bit parity generator 

circuit and verify its functionality. 

 

7. Simulate the VHDL code module corresponding to the eight-bit check bit generator 

circuit and verify its functionality. 

 

8. Build or simulate the eight-bit error corrector circuit and verify its functionality. 

Connect all three blocks of the eight-bit Hamming Code circuit together on the 

Spartan-3E Starter Kit board and ensure that they function properly. Due to the size 

of the data message being transmitted, you need only display the final corrected 

version of the eight bit data on the I/O board LEDs. Fully test the functionality of 

your circuit by purposely inserting errors into the transmission between the parity 

generator and the check bit generator blocks. When you are sure that your circuit 

functions correctly, show your lab instructor its operation. 

 

5. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 5: 

Barrel Shifters 
 

1. Purpose 
 

 In this lab, you will be introduced to the concepts of data shifting circuits by 

designing and implementing a barrel shifter, using the Spartan-3E Starter Kit board. 

 

2. Background 
 

2.1 Barrel Shifter Circuits 

 

 Data shifting circuits are of critical importance in CPU design. They are useful for 

bit-mask manipulation and various other operations that would be cumbersome using 

other mathematical functions. When designing and building a barrel shifter, there are 

several functional specifications that must be considered. For instance, will the shifter 

move data to the left or to the right? More often than not, in order to allow the shifter 

circuit to be general purpose, it should support both left and right shifts of the data with 

which it is supplied, based upon some selection input setting. Another issue that must be 

considered when designing a shifter is what type of shift operation will be performed. 

 When a logical shift circuit moves data left or right, the data shifted out of the range 

of the data storage element is dropped. In addition, the empty space created in the storage 

element with each bit shift is filled with a pre-determined, or runtime specified, bit value 

that is typically zero. This type of operation is most often useful for bit-mask 

manipulations. 

 A circular shift circuit behaves similarly to the logical shift circuit; however, bits that 

are shifted out of one end of the storage element are fed back into the other end as inputs. 

This allows all of the original data to be kept, even though it is moved around. Circular 

shift functionality is useful for certain bit manipulations that may or may not use masks. 

 Finally, arithmetic shift functionality is set up to achieve very low cost 

multiplications or divisions by powers of two. To achieve this, a left shift operation will 

input zeros into the newly vacated LSBs of the data storage element. A right shift 

operation, on the other hand, will replicate the sign bit of the original data into the MSBs 

of the data storage element that are emptied during the shift operation. This is the type of 

shifting circuit that will be designed and implemented in this laboratory. 

 A final consideration when designing shifting circuits is the amount of shift the 

circuit will support. A single bit shifting circuit, while simple to design, will not be 

terribly useful, as multi-bit shift operations will require the data to be fed through the 

shifter several times. A shifter that will handle a variety of different shift amounts will be 

more complicated to design, but will ultimately be more useful. 

 In this laboratory, you will design an 8-bit arithmetic barrel shifter. This circuit will 

implement the arithmetic shift functionality and will be able to support a shift amount of 

anywhere from zero to seven bits. The full functionality of this circuit may be achieved 

using many two-input multiplexer circuits, whose inputs and control signals are 

connected in a specific manner. Recall that a two-input multiplexer will have two data 
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inputs and one select line. Depending on the value of the select line, the data fed to its 

single output will be one or the other of the data input values. The functionality of the 

multiplexer is shown in the following truth table: 

 

A Input B Input Sel Input Output 

A B 0 A 

A B 1 B 

Table 1 – The truth table for a two-input multiplexer. 

 

 The following diagram shows how many of these two-input multiplexers may be tied 

together to create an 8-bit arithmetic barrel shifter circuit. The circuit has eight inputs and 

eight outputs for taking in and outputting data. There are also three shift inputs used to 

specify the amount of shift to be performed. Finally, a direction input is used to specify 

the direction of the shift, zero for left and one for right. 

 

 
Figure 1 – Block diagram for the 8-bit arithmetic barrel shifter. 
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3. Preliminary Design 
 

 In this laboratory, you will design and implement an 8-bit arithmetic barrel shifter 

circuit using the block diagram provided in Figure 1 of the Background section of this 

laboratory. 

 

Before coming to lab, you should: 

 

1. Design a VHDL module to implement the two-input multiplexer functionality. This 

module will form the basis of the entire shifter circuit and, therefore, it is critical that 

it functions properly. 

 

2. Using the two-input multiplexer module that you designed in Part 1 above, connect 

56 of them together as shown in Figure 1 to implement the arithmetic barrel shifter 

functionality. In the block diagram provided, the lower input of each multiplexer 

block corresponds to the input that is passed through the device for a select input of 

zero. 

 

4. In the Lab 
 

1. Enter your design for the 8-bit arithmetic barrel shifter circuit into the Xilinx ISE 

development environment. 

 

2. Be sure to test the functionality of your multiplexer module before testing the 

functionality of your full shifter circuit. If you have made an error in the construction 

of the multiplexer, it may not be obvious when your shifter circuit does not function 

properly. 

 

3. After ensuring that your multiplexer circuit functions appropriately, test your 

implementation of the complete barrel shifter. Be sure to test for all of the different 

direction and shift amount combinations, as the 8-bit input to the circuit is of no real 

importance. 

 

4. When you are sure that your barrel shifter circuit functions as you expect, program it 

to your Spartan-3E Starter Kit board for physical testing. Due to the number of inputs 

in this design, it may be somewhat difficult to use only the switches and pushbuttons 

on the Spartan-3E Starter Kit board to fully test your design. Make sure to take 

advantage of the additional switches provided by the PMOD-SWITCH units. Verify 

the functionality of your circuit and show the lab instructor your shifter’s operation. 
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5. Post-Lab 
 

 Include a solution to the following question in your laboratory write-up to be turned 

in next week. 

 

1. Using the block diagram shown in Figure 1 of the Background section of this 

laboratory as a road-map, design a block diagram that would implement the circular 

shift functionality for both right and left shift operations. 

 

6. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 

3. Weste, Neil H. E.; and Eshraghian, Kamran. (1993). Principles of CMOS Design: A 

Systems Perspective Second Edition. Massachusetts: Addison-Wesley Publishing 

Company. 
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Laboratory Experiment 6: 

High-Speed Adder/Subtractor 
 

1. Purpose 
 

 In this lab, you will be introduced to high-speed computer arithmetic by designing 

and implementing a look-ahead carry generation adder/subtractor circuit that may be 

downloaded to the Spartan-3E Starter Kit board.  

 

2. Background 
 

2.1 Look-Ahead Carry Generator Adders 

 

 While the ripple-carry adder circuits that you implemented in an earlier laboratory 

experiment are quite simple and very capable, they do have a limitation. Due to the way 

the single-bit adder blocks are cascaded together, in order for the most significant bit of 

the result to be calculated, all of the earlier bits must have already been calculated. For 

instance, in order for the second bit of the result to be calculated, the first bit must be 

calculated first. This phenomenon is due to the fact that the carry-out value of earlier bits 

is required in order for the current result to be calculated correctly. For calculations 

requiring very few bits, the additional delay required for calculating all the bits 

sequentially is insignificant. However, when the data being manipulated grows to a more 

useful size of 16, 32, or 64 bits, the delay to calculate the final result becomes significant, 

especially for high-speed computing applications. If a simple ripple-carry adder system 

were used in a high-speed processor, either addition operations would be very expensive, 

or, worse yet, the maximum clock rate of the processor may have to be limited. 

 Fortunately, research has developed look-ahead carry generation circuitry that allows 

all of the bits for the result to be calculated simultaneously based upon the initial carry in 

value. The basis for this circuitry involves some Boolean manipulations using the output 

functions generated by the truth table for the full-adder circuit. 

 

Ai Bi Ci Si Ci+1 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Table 1 – The truth table for a single-bit full-adder. 

 

 The subscripts in the truth table above refer to the bit number of the current output. In 

other words, using the i
th

 bits of each input operand, and the i
th

 carry (carry-out of 

previous bit operation), the i
th

 sum value can be generated, along with the next carry 
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value. Essentially, this is just a change in the naming of the inputs and outputs presented 

in the truth table of the ripple-carry adder laboratory. From Table 1, the following logic 

functions can be developed for the outputs of the adder circuit block: 

 

 

 

                 

                      

 

 

The equation for the Ci+1 output may then be re-written as follows: 

 

 

 

                        

 

 

 

 It is already clear that the carry for the i+1 stage of the adder is defined recursively in 

terms of the carry from stage i with some additional logic surrounding it. From the 

equation above, some supplementary functions may be defined, allowing the Ci+1 

function to be re-written in a more efficient form. The results of this simplification are as 

follows: 

 

 

          

           

               

 

 

 This simple equation for the carry out from an adder block is actually quite powerful. 

By recursively expanding the equation for Ci+1 through replacing all the previous Ci’s 

with their equivalent formulas, the following equations for each carry output can be 

created: 
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Remember, the C0 value required by each of these equations is the initial carry in value 

presented to the adder circuit from an external source. Therefore, all the carry values may 

be simultaneously calculated after a single gate delay that is required to produce the Gi 

and Pi functions for each bit pair of the operands. The high-speed adder circuit may then 

be constructed out of blocks with the following inputs and outputs: 

 

 
Figure 1 – Component block for the look-ahead carry adder circuit. 

 

 It should be noted, however, that nothing in life is free. While the look-ahead carry 

generation adder circuit does eliminate the delay incurred by cascading full-adders 

together, this speed comes at a cost of additional logic that must be implemented external 

to the blocks shown in Figure 1. This logic must implement all of the carry functions that 

are required for the circuit to function with as many bits as are included in the operands. 

The overall structure for the look-ahead carry generation adder circuit is shown in the 

following figure: 

 

 
Figure 2 – Block diagram for the look-ahead carry generation adder circuit. 

 

 Finally, just as with the ripple-carry adder circuit, the look-ahead carry generation 

adder circuit may be made into an adder/subtractor by inserting XOR gates in the path of 

each of the B operand bits. These gates may be used as selectable inverters, just as 
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before, so when C0 is zero, the circuit adds the two operands together, and when C0 is 

one, the circuit subtracts B from A. If you do not recall how this process works, please 

consult the laboratory dealing with the ripple-carry adder/subtractor earlier in this 

manual. 

 

3. Preliminary Design 
 

 In this laboratory, you will design and implement a 4-bit look-ahead carry generation 

adder/subtractor circuit using the principles discussed in the background section of this 

laboratory. After designing and testing this circuit, you will then cascade two of them 

together to create an 8-bit adder/subtractor. This circuit will be a hybrid of the ripple-

carry and look-ahead carry generation circuits, in that the four most significant and least 

significant bits will be calculated using the look-ahead carry generation techniques, but in 

between the two blocks, there will be some sequential overhead incurred due to the 

cascading. 

 

Before coming to lab, you should: 

 

1. Design a VHDL module to implement the required functionality shown in Figure 1 of 

the Background section of this laboratory. This module should also include the XOR 

gate and all connections necessary for selectively inverting the B operand input. This 

will allow your final circuit to be an adder/subtractor. In order to invert the B operand 

bits as necessary, your module must include an input for the C0 value. 

 

2. Using Figure 2 of the laboratory as a template, draw a block diagram for the four-bit 

look-ahead carry adder/subtractor circuit. Since the block diagram provided only 

implements an adder circuit, some additional connections are needed in your circuit. 

In order to invert the B operand bits as necessary, each adder/subtractor module must 

have a C0 input, and the external C0 for the circuit must be provided to each module. 

 

3. Using the VHDL module you created in (1) above, construct a VHDL version of the 

four-bit look-ahead carry generation adder/subtractor, for which you developed a 

block diagram in (2). Be sure to include all of the equations necessary to calculate 

each of the necessary carry values, and feed the appropriate data to each of your adder 

modules. 

 

4. Draw a block diagram for cascading two of your 4-bit look-ahead carry 

adder/subtractors together to make an 8-bit adder/subtractor. You do not need to 

implement look-ahead carry generation functionality between the two modules. 

 

5. Write a VHDL module that cascades two of your 4-bit look-ahead carry 

adder/subtractor circuits together. In order to allow for the subtraction operation to 

function properly, your second module will need an external input for C0 and your 

first module will need an external output for C0. These may then be tied together to 

allow the B operand bits to be appropriately inverted. 
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4. In the Lab 
 

4.1 4-Bit Look-Ahead Carry Adder/Subtractor 

 

1. Enter your design for the four-bit look-ahead carry adder/subtractor into the Xilinx 

ISE development environment. 

 

2. Simulate your design to ensure it functions properly in both the addition and 

subtraction modes. If something is wrong in simulation, fix the problem and simulate 

your design again. When you are satisfied that your design functions properly, 

download it to the Spartan-3E Starter Kit board for testing. 

 

3. When you are satisfied that your design functions properly, show the lab instructor 

your working circuit before proceeding to the next section of this laboratory. 

 

4.2 8-Bit Look-Ahead Carry Adder/Subtractor 

 

4. Enter your design for the eight-bit look-ahead carry adder/subtractor into the Xilinx 

ISE development environment. 

 

5. Due to its size and the limited number of switches on the Spartan-3E  

   Starter Kit board, you will only simulate your design for the eight-bit 

adder/subtractor. Simulate several instances of addition and subtraction, and when 

you are satisfied that your design functions as expected, show the lab instructor your 

simulation results. 

 

5. Post-Lab 
 

 Include solutions to the following questions in your laboratory write-up to be turned 

in next week. 

 

1. Design a full eight-bit look-ahead carry generation adder circuit. You only need to 

develop the necessary functions to implement the design, and draw a block diagram 

showing how the entire design fits together. 

 

2. Design a circuit to determine if an overflow occurred during an addition or 

subtraction. Your circuit should utilize the operation being done, as well as the signs 

of each of the operands and the result to determine if an overflow occurred. 

 

6. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 

 



Laboratory Experiment 7-1 

 

Laboratory Experiment 7: 

Sequential Logic Design and Finite State Machines 
 

1. Purpose 
 

 In this lab, you will learn the skills required to design and program sequential circuits 

that may be uploaded to the Spartan-3E Starter Kit board. Students will design and build 

a finite state machine both through utilizing D flip-flop elements and entering the state 

diagram directly into the Xilinx ISE development package. 

 

2. Background 
 

2.1 State Diagrams and State Machines 

 

State diagrams are often used for sequential logic design because they provide a 

simple, visual method to see the overall functionality of the system as a whole. Each state 

in a finite state machine (FSM) is used to achieve some desired functionality, or is used 

as a synchronization point between functional state traversals. For any given FSM, a state 

diagram may be composed showing the next state and associated outputs of the system 

based upon the current state and inputs presented to the system. 

In all state diagrams, the next states that are possible given a current state may be 

determined by following the transition arrows. Some transitions are taken only when a 

certain input combination is presented, while others may be taken all the time. The latter 

type of transition occurs unconditionally at the next clock cycle. 

The outputs from the state machine also come in two varieties. In the first, the outputs 

from the system are only a function of the current state in which the system resides. As 

long as the system resides in a given state, these unconditional outputs will always have 

the same value. This type of output may be included in a state diagram by labeling the 

state bubble with each output and its associated value. When an FSM contains only 

unconditional outputs, it is called a Moore Machine. Figure 1(a) shows a Moore Machine 

implementation of a two-bit binary counter with a carry output (C) signal. Before the 

counter cycles back to zero, it asserts the carry output to allow for potential cascading of 

multiple counters together. 

 Whereas, some outputs depend only on the state in which the FSM resides, others 

may depend upon the input values presented while the system is in a given state. These 

conditional outputs may not be placed directly in the state bubble in a state diagram 

because the output from a given state may be different depending on the inputs presented. 

To list this type of output in a state diagram, a transition arrow out of a state is labeled 

with an input value and the associated output value it should produce. A transition must 

be added coming out of a given state for each combination of input conditions that may 

arise. When an FSM contains only conditional outputs, it is called a Mealy Machine. 

Figure 1(b) shows a Mealy Machine implementation of a two-bit counter with a carry 

output and enable input. Depending on the state of the enable input, the FSM will either 

progress to the next state with the next clock tick or it will stay where it is. Similarly, the 
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state of the carry output also depends on whether or not the system is enabled for 

counting. 

 

 
Figure 1 – Moore machine and Mealy machine implementations of the two-bit counter. 

 

In Figure 1, each state in the diagram is labeled with a bit pattern corresponding to the 

output values of the two flip-flops required to implement the design. More often than not, 

however, state diagrams are composed in which the states are given symbolic names. 

These names are often chosen to reflect the functionality that is achieved within a given 

state, making it easier for an individual to discern the full functionality of the system. 

Figure 2 shows the same state diagram as was presented in Figure 1(b), but the binary 

state names are replaced with the names S0, S1, S2, and S3. 

  

 
Figure 2 – State diagram with symbolic state names. 

 

 When a diagram, such as the one shown in Figure 2, is to be physically implemented, 

the symbolic state names must be assigned unique binary codes. In the state assignment 

process, each symbolic state name is associated with a binary state code that will later 

correspond to the data stored in the flip-flops of the system at any given time slice. The 
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current state of the system will then be determined by this flip-flop data storage. 

Depending on the state code selected for each state in the FSM, different implementation 

costs can be incurred. For the FSMs developed in this laboratory, however, these 

differing implementation costs based upon state code assignment will not be critical 

enough to be of concern. 

 

2.2 Implementing Finite State Machines 

 

 Implementing a physical manifestation of a state diagram is fairly simple, and may be 

done through the following steps: 

 

1. Develop a state transition table from the supplied state diagram. This is a kind of 

truth table for the state machine, showing the possible input combinations for a 

given current state along with the corresponding next state, and output values that 

will result. Figure 3(a) shows an example of a state transition table that was 

developed for the state diagram shown in Figure 2. 

 

2. Decide upon the number of flip-flops that will be required to implement the 

design. This can be found by the number of bits that are required to list the binary 

value for the number of states in the system. This is because in order to represent 

N system states, at least N distinct combinations of flip-flop values must be 

possible, requiring log2 N distinct flip-flops. After choosing the number of flip-

flops to be used, assign each state a unique binary number with the same number 

of bits as flip-flops in the system. A new version of the state transition table may 

then be generated containing these state code assignments. An example of a state 

code assignment for the state diagram in Figure 2 is shown in Figure 3(b). 

 

3. Choose the type of flip-flops that you will use to implement your design. More 

complex flip-flops, like JK flip-flops, may reduce the amount of external logic 

needed to control the flip-flops themselves. However, since D flip-flops are easier 

to use, they will be utilized in this laboratory. Remember, with a D flip-flop, the 

value stored at a clock cycle is the same as the input value into the flip-flop at the 

rising edge of the clock. 

 

4. Compose an excitation table for the system. This table will contain the necessary 

inputs for each flip-flop that will produce the correct next state at the next clock 

cycle. These required input values may then be treated like any other circuit 

output and logic functions may be developed to pass the correct input values to 

each flip-flop based on the current state and system inputs. Remember, for D flip-

flops, this table is equivalent to the state transition table created in Step 2. For 

more complex flip-flops, a new table must be generated for the required flip-flop 

input values. 

 

5. Derive logic functions for each flip-flop input, and for each system output signal 

based upon the excitation table you generated in Step 4. Remember, when using 

D flip-flops, the excitation table will be similar to the one shown in Figure 3(b). 
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IN 
Present 

State 

Next 

State 
OUT  IN Q0 Q1 D0 D1 OUT 

0 S0 S0 0  0 0 0 0 0 0 

1 S0 S1 0  1 0 0 0 1 0 

0 S1 S1 0  0 0 1 0 1 0 

1 S1 S2 0  1 0 1 1 0 0 

0 S2 S2 0  0 1 0 1 0 0 

1 S2 S3 0  1 1 0 1 1 0 

0 S3 S3 0  0 1 1 1 1 0 

1 S3 S0 1  1 1 1 0 0 1 

(a) State Transition Table  (b) Excitation Table 

           

Figure 3 – Tables required when performing sequential logic design. 

 

2.3 The Turn Signal FSM 

 

Now that the basics of sequential logic design have been discussed, the FSM that will 

be designed in this laboratory may be introduced. Figure 4 below shows a block diagram 

of the system that will be designed, and how its outputs may be mapped to a real-world 

application. The back of a car has three lights, one on each side and one in the center. 

These lights will be used for turn signals, as well as for hazard flashers, and therefore, 

each will be tied to an output of the FSM. In addition, the FSM has three inputs 

corresponding to the right and left turn signal selections, as well as a system clock. 

 

 
 

Figure 4 – Block diagram and real world mapping for the Turn Signal FSM. 

 

When neither of the turn signal control inputs is asserted high, none of the lights for 

the car should glow, and the system should stay in this idle state. If a left turn signal is 

requested by asserting the left input while keeping the right input low, the left light of the 

car should flash on and off with the same frequency as the system clock signal. Similarly, 

if a right turn signal is requested by asserting the right input while keeping the left input 

low, the right light of the car should flash on and off with the same frequency as the 

system clock signal. Finally, asserting both the right and left inputs simultaneously 

indicates a hazard condition. In this situation, the left and right lights should both be lit 

while the hazard light is not for one clock cycle. Then the hazard light should light while 

the others turn off for the next clock cycle. Finally, all lights should turn off for one 

additional clock cycle. All of these output conditions should repeat for as long as the 

input requirements are satisfied. 
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A state diagram for this system is shown in Figure 5 below. Each state in the diagram 

is given a symbolic state name to make it easier to determine what is going on for each 

combination of input conditions. In addition, this system may be implemented as a Moore 

Machine since the output light pattern depends only on the current state of the system. 

The binary number shown in each state of Figure 5 may be used, not only for the flip-flop 

values indicating the current system state, but may also act as the system outputs tied 

directly to the three lights on the car. This method of state assignment is called “output 

coded” state assignment, because the system state may double for the system outputs 

directly. This type of state assignment only works for Moore Machines because the 

outputs of the system only rely upon the current system state. Transitions in the diagram 

are either labeled with the input conditions that must be true for the transition to be taken, 

or are labeled with a one. Transitions labeled with a 1 are always taken at the next clock 

cycle, regardless of the inputs into the system. 

 

 
 

Figure 5 – State diagram for the Turn Signal FSM. 

 

3. Preliminary Design 
 

 The preliminary design for this laboratory consists of creating an implementation for 

the Turn Signal FSM. The counter, which was discussed as part of the background 

section of this laboratory, was only used to discuss the concepts of sequential logic 

design and will not be implemented in the laboratory. 
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Before coming to lab, you should: 

 

1. Generate a state transition table for the Turn Signal FSM using the state diagram 

provided in Figure 5. 

 

2. As can be seen from the state code assignments in the state diagram, this circuit will 

require the use of three flip-flops. For ease, this circuit will be implemented using D 

flip-flops, therefore, the flip-flop inputs may be named D0, D1, and D2, and the 

outputs may be named Q0, Q1, and Q2. With this in mind, write an excitation table 

for the Turn Signal FSM including the input signals L and R, as well as the flip-flop 

inputs and outputs. Keep in mind that each car taillight may be tied to one of the flip-

flop outputs in the final design. 

 

3. Generate the excitation logic functions for each flip-flop in the Turn Signal FSM. 

These functions should use the system inputs and the current state to derive the input 

signal value to each flip-flop that will be stored at the next clock cycle. Bring these 

functions and the state diagram for the FSM to the laboratory for implementation on 

the Spartan-3E Starter Kit board.  

 

4. In the Lab 
 

 The Xilinx ISE development environment allows for sequential circuits to be entered 

in several different formats, depending on the nature of the problem at hand. One simple 

entry method uses standard VHDL code and the modular design techniques with which 

you should now be familiar. In this method, a VHDL module must first be created to 

implement the functionality of a flip-flop of the desired type. This module may then be 

used in conjunction with logic equations for the inputs and outputs, just as though a 

circuit were being made out of physical components. 

 While this method may be used for any situation that you will encounter, for large 

problems, it may be tedious or undesirable to reduce a state diagram to this level for 

implementation. To accommodate this situation, the ISE development environment 

allows sequential designs to be directly entered at the state diagram level. The VHDL 

code to implement the state diagram is then automatically generated for you. This 

laboratory procedure will discuss both ways to enter the turn signal FSM design into the 

development environment. 

 

Sequential Logic Design Using Flip-Flops 

 

1. The first part of this procedure is concerned with creating the D flip-flop module to 

be used in the FSM implementation. To that end, create a new project in the ISE 

Project Navigator and add a VHDL module file to it. The input ports for this module 

should include a D input and a CLK input, and the outputs should include a Q output 

and optionally a Q_L output for the inverse of Q. 

 

2. The key to creating any flip-flop in VHDL is edge detection on the clock signal. Edge 

detection can be achieved quite simply within a process you create in your VHDL 
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file. If you do not remember how to create a process, please see the laboratory 

procedure for the BCD code conversion in this manual. Both the D and CLK input 

signals will be used within the process, so note them accordingly in the process 

declaration. 

 

3. Edge detection is then quite simple and may be achieved with an IF statement within 

your new process. The first condition that must be checked is the level of the CLK 

signal. For a rising-edge triggered flip-flop (which we will use) the CLK should be 

high in order for the flip-flop to trigger. This condition alone is not enough, however, 

so an additional condition must also be checked. The IF statement must also check for 

an event on the CLK input signal in order to achieve true edge-triggered functionality. 

An event will be triggered on a given signal for a number of different reasons, 

including a change from low-to-high or high-to-low. To check for an event on a 

signal, enter the signal name followed by a single quote and the word “event,” as 

follows: 

signal_name’event 

 

 The following code illustrates the proper format for an edge-detection IF statement, 

and in fact, is the code required to produce an edge-triggered D flip-flop: 

 

  process (CLK, D) 

   begin 

   if CLK = '1' and CLK'event then 

    Q <= D; 

    Q_L <= not (D); 

   end if; 

  end process; 

 

4. When you finish entering your flip-flop VHDL file, synthesize your code to eliminate 

any syntax errors and simulate your design to ensure that it works appropriately. 

 

5. When it comes to sequential logic design, the only other issue that must be dealt with 

is the clock input when assigning pin numbers. Pin C9, is mapped to a 50 MHz 

crystal oscillator on the board. This crystal oscillator is too fast to be useful in its raw 

state. To remedy this, Appendix B of this laboratory manual contains code modules 

for a 1 Hz clock generator and a selectable frequency clock generator. By adding one 

of these modules to your design and utilizing the 50 MHz crystal oscillator signal, 

you will be able to generate a slower clock frequency for your sequential designs. 

Assign pin numbers to all the inputs and outputs of the D flip-flop, and program it to 

your test board to ensure that it works as expected. 

 

6. THIS STEP IS CRITICAL. After testing your D flip-flop on the Spartan-3E  

   Starter Kit board, REMOVE the clock divider module that you added to it to produce 

the slower clock frequency. You should save the D flip-flop version that takes in a 

clock signal from the outside and uses that directly for its edge-detection. This is 

important when it comes to simulating higher-level designs that use the flip-flop you 
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just generated. If you were to leave in the clock rate division, when a design that uses 

this flip-flop is simulated, upwards of 50,000,000 clock cycles would have to go by 

before you would see the states changing! 

 

7. When you have verified that your D flip-flop design works appropriately, use this 

module in conjunction with the logic equations you developed for the turn signal 

FSM to write a VHDL file that achieves the required functionality. Create a new 

project and enter this file for testing. Be sure to tie the clock input for the FSM to the 

clock inputs of all the flip-flop elements you place in your design. At this point, do 

not include any of the clock divider modules in your FSM design. One of these 

modules may be included after your design is simulated and before it is programmed 

to the Spartan-3E Starter Kit board. In order to use the output values of the flip-flops 

as inputs to logic equations, you will need to create internal signals that you can copy 

the values into. These signals can then be used in logic equations to be fed into the 

inputs of the flip-flops. Also, do not forget to add the VHDL file for the D flip-flop 

you generated to this new project, so that the code will be accessible. 

 

8. Synthesize the Turn Signal FSM design, and simulate it to ensure that it functions as 

you expect. Remember, when it comes to assigning pin numbers to the input and 

output ports of your turn signal FSM, be sure to assign the clock port to the pin 

discussed earlier. 

 

9. When you are sure that your design functions as you expect, you may add one of the 

clock divider modules to the design and use its output as the clock inputs to your flip-

flops. You will need to re-compile your design and generate the programming file for 

download. When you have completed your design, download it to your Spartan-3E 

Starter Kit board and show its functionality to your lab instructor. 

 

 

5. References 

 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 8: 

Traffic Light Controller 
 

1. Purpose 
 

 Typically, traffic light control is a field dominated by micro-controllers. Very 

complex timing of these lights can be handled with some simple software running on off-

the-shelf products. For very simple traffic lights, however, it may be possible to 

implement their timing functionality with simple sequential logic circuits. In this lab, you 

will design and implement two traffic light controller circuits using the Spartan-3E 

Starter Kit board. 

 

2. Background 
 

 For complex, modern traffic lights, often, the use of a micro-controller to handle all 

the timing functionality of the light is essential. Coordinating the three main signal lamps 

for each direction, left and right turn arrows, and walk and don’t walk signals is not an 

easy task. It may also be beneficial to alter the timing of the light based upon traffic 

sensors and time of day. Handling all this functionality is simply too daunting a task for 

simple logic circuits. In addition, the programming capabilities of a micro-controller 

allow the timing to be altered relatively easily when necessary. With this said, there are 

some simple applications in which the cost of developing a micro-controller system and 

its corresponding software would simply not be justified. For these situations, a simple 

sequential logic circuit may be constructed to provide all the required functionality. 

 

2.1 Simple Two-Way Intersection 

 

 The first circuit that will be designed for this laboratory experiment is one for 

controlling a traffic signal at a very simple intersection. Consider an intersection of a 

north/south road and an east/west road, as shown in Figure 1 below. 

 

 
Figure 1 – Illustration of the intersection for the first traffic light controller. 
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 For this first, very simple problem, each traffic signal only has three lamps: green for 

proceed, yellow for changing, and red for stop. A timer alone governs the changing of 

these lights and no additional sensor information is obtained regarding traffic flow or any 

other operating conditions. In addition, consider that the north/south road is busier than 

the east/west road; therefore, it is desirable to give longer green lights to the north/south 

road. The north/south road may be given ten time-unit green lights, while the east/west 

road is only given five time-unit green lights (for the purposes of this laboratory, a time-

unit may be assumed to be the length of one clock cycle of a chosen frequency). Just as 

with a typical traffic light, when one direction is given a green light, the other direction 

must be given a red light. For the transition from green to red, a yellow light is given to 

the directions that had a green light previously, for a duration of one time-unit. Finally, 

when the yellow light transitions to red, all four directions are provided with a red light 

for one time-unit, allowing for a margin of safety in the event someone decides to run the 

new red light. This functionality is summarized in the following flowchart. 

 

 
Figure 2 – Flowchart for the simple traffic light controller. 
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2.2 Two-Way Intersection with Traffic Sensors 

 

 For the second circuit to be developed in this laboratory experiment, consider that the 

previous traffic light no longer satisfies the needs of the traffic patterns on these two 

streets. If the traffic flow on the north/south street increases drastically while the traffic 

on the east/west street remains very low, the timing that was provided in the previous 

section could produce undesirable delays on the north/south road. If there are no cars 

waiting for the red light on the east/west street, there is no reason to change the 

north/south signal from green to red. When a car arrives at the east/west traffic light, the 

same timing presented in the previous section may be initiated. In order to achieve this 

functionality, automobile sensors are inserted at the intersection as shown in the 

following figure. 

 

 
Figure 3 – Illustration of the intersection with the automobile sensors added. 

 

 The addition of the automobile sensors allows the traffic light controller to adapt to 

changing traffic patterns. This will allow the north/south street to have an unrestricted 

traffic flow in the event that no cars are waiting at either of the cross street traffic signals. 

The functionality of these automobile sensors, in conjunction with the traffic light timing, 

is summarized in the following flowchart. 
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Figure 4 – Flowchart for the traffic light controller including automobile sensors. 
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3. Preliminary Design 
 

 In this laboratory, you will design and implement both of the traffic light controller 

circuits presented in the Background section of this laboratory. In your implementation, 

you may use either of the 50-MHz clock divider modules presented in Appendix B of this 

laboratory manual. You may find it desirable to utilize the selectable frequency module, 

as you will not be forced to wait for five and ten-second timing cycles to complete. 

 

Before coming to lab, you should: 

 

1. Design a VHDL implementation of the traffic light controller presented in 

Background Section 2.1 of this laboratory experiment. Do not include a clock divider 

module in your code yet, as you will need to simulate your design before 

implementing it. In order to convert the flowchart provided into functional VHDL 

code, you may find it helpful to first develop a state transition diagram encompassing 

the functionality of the flowchart. This step is not necessary, however, and your 

design may be developed directly from the flowchart itself. In addition, you will 

probably find the use of variables in your VHDL code useful. Variables may be 

declared within VHDL processes (like those used for IF statements) and use the 

following syntax: 

 

variable variable_name : type := initialization_value; 

 

 Any variable declarations are placed between the process declaration statement and 

the “begin” statement for the process. The variable type may be: integer, real, bit, or 

any number of other more complex data types that will not be necessary for this 

laboratory. When assigning a value to a variable, the “:=” assignment operator must 

be used. Finally, standard mathematical operations, such as addition, subtraction, 

multiplication, and division may be performed on variables, as they are treated in a 

manner similar to C++ variables. For an example of simple variable use, consult the 

clock divider code modules in Appendix B of this laboratory manual; both utilize 

variables to store a count. 

 

2. Design a VHDL implementation of the second traffic light controller presented in 

Background Section 2.2 of this laboratory experiment. Again, do not include a clock 

divider module in your design yet, as you will need to simulate it before 

programming it to the Spartan-3E Starter Kit board. 
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4. In the Lab 
 

4.1 Two-Way Intersection with No Sensors 

 

1. Enter your design for the first two-way traffic controller into the Xilinx ISE 

development environment. 

 

2. Simulate your design to ensure the timing of the lights is appropriate and fits the 

specifications of the flowchart in Background Section 2.1 of this laboratory 

experiment. If your design does not simulate properly, correct all inconsistencies 

before continuing to the next section of this laboratory procedure. 

 

3. Include one of the 50-MHz clock divider modules from Appendix B of this laboratory 

manual in your design, and connect its output to the clock signal of your traffic light 

controller. Either clock divider module may be used with this design; however, the 

selectable frequency module may make physical testing of your circuit less time 

consuming. 

 

4. Program the Spartan-3E Starter Kit board with your design and physically test your 

circuit. When you have verified that your design functions properly, show the lab 

instructor its behavior before moving on to the next step in this laboratory. 

 

4.2 Two-Way Intersection with Sensors 

 

4. Enter your design for the second two-way traffic controller into the Xilinx ISE 

development environment. 

 

5. Simulate your design to ensure the timing of the lights is appropriate and fits the 

specifications of the flowchart in Background Section 2.2 of this laboratory 

experiment. Be sure to simulate all combinations of sensor inputs. If either sensor or 

both are triggered, the traffic light timing should be initiated. The only way for the 

timing process to be halted is for both sensors to be turned off. If your design does not 

simulate properly, correct all design problems before continuing on to the next 

procedure in this laboratory. 

 

6. Include one of the 50-MHz clock divider modules from Appendix B of this laboratory 

manual in your design, and connect its output to the clock signal of your traffic light 

controller. 

 

7. Program the Spartan-3E Starter Kit board with your design and physically test your 

circuit. When you have verified that your design functions properly, show the lab 

instructor its behavior before completing this laboratory. 
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5. Post-Lab 
 

 Include a solution to the following question in your laboratory write-up to be turned 

in next week. 

 

1. Design an implementation of the traffic light controller circuit without traffic sensors 

using D flip-flops with asynchronous reset capabilities. In order to do this, it may be 

beneficial to design a timer circuit based upon a shift register. After a reset, a signal 

may be shifted through the shift register, and tap points may be included in the design 

to provide a signal for each of the required timing events. Begin this design by 

creating a schematic diagram for this timer, or a timer of your choosing, keeping in 

mind that the clock frequency used is the same as the base time unit for the system. 

Next, generate the state transition table, excitation table, and a schematic diagram for 

your main controller circuit, obeying the flowchart in Figure 2 from the Background 

section of this laboratory. After completing this, generate the output functions 

controlling the traffic signals based upon the current state of your controller circuit. 

You may simply develop the functions, and do not need to draw the schematic 

diagrams representing them. 

 

6. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 9: 

Data Encryption Using LFSRs 
 

1. Purpose 
 

 This laboratory experiment will introduce some concepts of data encryption and 

cryptography that may be implemented using an FPGA and the Spartan-3E Starter Kit 

board. The student will then be given a set of encrypted ASCII text and will decrypt it 

using the methods specified in this experiment. 

 

2. Background 
 

 First, it should be stated that the cryptography method presented in this lab is a very 

simplified version of what is used in most secure data communications today. In general, 

the more complex the encryption protocol, the harder it will be for an external entity to 

crack the cipher and decode a data transmission. Implementation of standard 

cryptographic algorithms, while fairly simple and straightforward with a computer, is not 

a simple task when given only an FPGA. For this reason, the cryptographic algorithm 

presented in this laboratory will focus only on encrypting eight-bit blocks of data using 

an eight-bit key sequence. 

 

2.1 Basics of Cryptography 

 

 The general idea behind cryptography is a very simple one, and revolves around the 

bitwise XOR function. At the sender, a cryptographic key sequence, K, is generated by an 

encryption algorithm, and is combined with the plain text, P, that is to be encrypted. The 

resulting cipher text may then be transmitted to the receiver, which must then use the 

same key sequence to retrieve the plain text information from the cipher. This behavior is 

possible because of the following relation: 

 

P  K  K = P  0 = P 

 

The entire encryption/decryption process is shown in the following diagram: 

 

 
Figure 1 – The basic encryption/decryption process. 
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to overcome. If a fixed key sequence were always to be used for a given encryption 
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algorithm, it would be a fairly simple matter to crack that key given enough time. The 

algorithm would then be rendered useless because the key sequence is known and does 

not change. Several things may be done to increase the security level of an algorithm 

including: increasing the key length, changing the key during transmission, applying 

several keys to a single data block, and a variety of other techniques. In this laboratory, 

the encryption algorithm used will change the key value after each plain text character is 

encoded or decoded. With this technique, it must be ensured that both the sender and 

receiver are using the same key at any given time, and that they are using a key sequence 

that is not easily deciphered. 

 

2.2 Generating Encryption Keys 

 

 In general, it is desirable for the series of keys used to encrypt or decrypt cipher text 

to be a pseudo-random bit sequence. For instance, using a simple counter circuit, while 

an easy way to generate changing key values, produces an encryption that is easy to 

crack. Once one key value is discovered, all the following key values are automatically 

known. Using a random sequence of keys to encrypt data means that even if one key is 

discovered, all the other data will remain secure as none of the other keys are 

automatically known. In reality, a true random sequence is impossible to produce, 

however, a fairly good simulation may be achieved using a linear feedback shift-register 

(LFSR). 

 An LFSR, with several strategically placed XOR gates, will produce a fairly random 

sequence in its bit positions. A problem with this design arises if the LFSR happens to 

contain all zeros. In this situation, the use of XOR logic will never change any of the bits, 

and the device will be stuck in that state. To avoid this problem, XNOR logic may be 

used to create the next state of the shift register. Before going on, it would be beneficial 

to show a diagram of one such shift register. 

 

 

 
Figure 2 – An LFSR design used to generate key values. 

 

 As is shown in Figure 2 above, the feedback relationship of the LFSR may be 

specified using a polynomial representation. For a given length LFSR, there are multiple 

polynomials that provide reasonable, but different, random sequencing. Therefore, the 

choice of this polynomial adds an additional degree of security over simply the use of a 

random key sequence. The design of the LFSR shown in Figure 2, with its characteristic 

polynomial, will be used throughout this description, and will be implemented later in the 

laboratory. 

 In order to ensure that the sending and receiving devices are using the same key 

sequences to manipulate data, two things must be specified for a given data transmission: 

the starting value of the LFSR bits, and the number of shifts between sampled key values. 

The starting values of the LFSR bits provide a reference point from which all the keys 

will be generated. Since the sender and receiver devices are both using the same key 
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generation polynomial, they will be guaranteed to get the same key sequence if 

incremented correctly. Allowing the number of LFSR shifts between sampled key values 

to be greater than one provides an additional degree of security over simply using a single 

increment. This way, even if an external entity knows the encryption polynomial being 

used and the starting key, they may still be unable to decrypt a transmission if they do not 

know the correct increment value being used. 

 For the purposes of this laboratory experiment, the encryption circuit that will be 

implemented must allow the initial LFSR bit values to be set to a specified initial key. In 

addition, a constant increment value of only one shift between key samplings will be used 

throughout this laboratory. While this design will not benefit from the added degree of 

security that stems from allowing a shift greater than one between samplings, it will be 

less complex to implement in the laboratory.  

 

3. Preliminary Design 
 

 In this laboratory experiment, each data block to be encrypted will consist of a single 

byte. To give the data some meaning, this byte will contain an ASCII character from one 

of the two tables contained in Appendix E. Your job, for this experiment, is to construct 

an encryption/decryption circuit using the LFSR shown in Figure 2. When an LFSR_Set 

signal is provided to the LFSR circuit, the byte value set as input to the circuit should be 

stored in the bits of the LFSR. When an encrypt/decrypt signal is provided to your circuit, 

it should shift the bits of the LFSR once, take the bitwise XOR of the LFSR and the input 

byte, and display this result to the user. Since the encryption and decryption functions 

both utilize the bitwise XOR functionality, this circuit will act as both an encryption and 

decryption device depending on whether the input data byte is plain text or cipher text.  

 

Before coming to lab, you should: 

 

1. Write a VHDL code module that implements the required functionality of the 

encryption key LFSR. This LFSR must have the ability to be set to an initial value, 

and to increment by a single shift when appropriate signals are provided. Depending 

on how you decide to implement your LFSR, you may find the FOR loop in VHDL a 

useful tool. This loop must be entered within a process, and has the following format: 

 

FOR index IN lower_bound TO upper_bound LOOP 

 Sequence of Statements 

END LOOP; 

 

 The upper and lower bounds of the loop may be exchanged and the TO replaced with 

DOWNTO in order to have the loop count down instead of up. 

 

2. Use your VHDL module to manipulate an input data byte into either cipher text or 

plain text depending on the type of data with which it is presented. Be sure to provide 

your LFSR module with the appropriate control signals from the I/O controls. You 

may find the pushbutton-switch debouncing module presented in Appendix D of this 

laboratory manual useful for this purpose. 
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4. In the Lab 
 

1. Enter your design for the data encryption/decryption circuit into the Xilinx ISE 

development environment. 

 

2. Simulate your design to ensure the proper functionality of the LFSR. If you included 

the pushbutton-switch debouncing module in your design from the pre-laboratory, 

you must remove it from your circuit temporarily to allow for simulation of your 

circuit. If your design does not simulate properly, correct all inconsistencies before 

continuing to the next section of this laboratory procedure. 

 

3. Program the Spartan-3E Starter Kit board with your design and physically test your 

circuit using the following data byte sequence and initial key value. 

 Enter the following key value into your encoder/decoder: 34 (hex) 

 Decrypt the following sequence of numbers: 

 

67 (hex) 

6A (hex) 

D1 (hex) 

 

 To verify if your design is working properly, the sequence you should get after 

decryption is: 

45 (hex) 

43 (hex) 

45 (hex) 

 

 Which, if you consult the ACSII tables in Appendix E of this laboratory manual, 

translates to the following character string: 

 

ECE 

 

4. After you have verified that your decryption circuit produces the correct results, 

decrypt the following sequence of characters and include both the decrypted 

hexadecimal results and the translated ASCII string in your laboratory report to be 

turned in next week. 

 

 Initial key value: C7 (hex) 

 Data sequence: 

 

AB 94 94 28 75 15 FC 07 D5 08 

92 15 D8 05 28 79 65 6E B5 AE 

38 DE 0E C5 AF 80 93 2D D5 FE 
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5. Finally, encrypt the following sequence of ASCII characters. Be sure to include the 

hexadecimal results of the encryption and the translated cipher text ASCII string in 

your laboratory report to be turned in next week. 

  

 ASCII string: Goodbye 

 Initial key value: 72 (hex) 

 Data sequence: 

47 6F 6F 64 62 79 65 

 

5. Post-Lab 
 

 Include a solution to the following questions in your laboratory write-up to be turned 

in next week. 

 

1. While the encryption/decryption circuit implemented in the laboratory did not utilize 

shift amounts greater than one, the use of this technique is desirable to create some 

additional security. If the LFSR is built using D flip-flops, compose the logic 

functions to be presented to each of the flip-flop inputs in order to allow three shifts 

for each rising edge of the clock. Each flip-flop in the 8-bit LFSR needs its own input 

function, and you must carry the appropriate XNOR logic as shown in Figure 2 

through your logic functions. 

 

6. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 

3. Meyer-Baese, Uwe. (2001). Digital Signal Processing with Field Programmable Gate 

Arrays. Berlin: Springer-Verlag. 
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Laboratory Experiment 10: 

D/A Converters 

 
1. Purpose 

 
 This laboratory experiment will introduce some basic digital-to-analog (D/A) 

conversion circuits. The Spartan-3E Starter Kit board and an oscilloscope will be 

employed to construct a counter module that will be used in this laboratory and to check 

digital signal converted to analog signal. 

 

2. Background 

 
  Digital processing has become increasingly important for manipulating analog 

signals needed in applications ranging from communications to motor control. In order to 

achieve these processing requirements, a method of converting analog signals into a 

digital format and back is necessary. An analog-to-digital converter is used to sample an 

analog signal at a given time, and to generate a digital approximation of the signal 

voltage at the time it was sampled. A series of these digital approximations may then be 

chained together to get a digital approximation of the original analog signal. Since only a 

finite number of bits are used to represent the signal voltage level, some precision is lost, 

but this conversion allows a digital processing element to manipulate the analog signal 

approximation. After manipulation of the digital signal, it may be necessary to convert 

the digital representation of the signal back to an analog waveform. To achieve this, a 

digital-to-analog converter receives a digital bit pattern and converts this bit pattern to an 

analog voltage level at a single output. This laboratory experiment will introduce an 

example of digital-to-analog circuit to be implemented with the Spartan-3E Starter Kit 

board and some additional, externally supplied circuit elements. 

 

2.1 D/A Conversion 

 

 Creating a simple D/A converter circuit is an easy task, requiring only a set of 

resistors. For this reason, and because the A/D converter requires the use of a D/A 

converter, the D/A converter will be addressed first prior to the next laboratory. The R-

2R resistor ladder network is a very simple circuit that achieves all the functionality 

required of a D/A converter. This circuit works by accepting a series of binary input bits, 

and weighting them through the resistor network to provide an analog voltage output. A 

schematic for this circuit is shown in Figure 1 below. For the purposes of this laboratory, 

the value of R shown in Figure 1 will be 1 KΩ. 
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Figure 1 – An R-2R resistor ladder D/A converter. 

 

While Figure 1 shows a four-bit version of the R-2R resistor ladder D/A converter, it may 

be expanded for larger numbers of bits, using the same design principles used to create 

the smaller version. The accuracy of this type of D/A converter is highly dependent on 

the tolerances of the resistors used, and on variations in the voltage levels of the digital 

inputs to the circuit. For these reasons, while this circuit is simple to design and construct, 

it is rarely used in the digital signal processing industry. Commercially available D/A 

converters often employ techniques such as current source networks, or pulse-width 

modulation and filtering to achieve a greater degree of accuracy, predictability, and 

uniformity of the analog output voltage. 

 

2.2 Expansion Connectors – FX2 Breadboard 

 

 Since we are required to connect the physical circuitry to the Spartan-3E Starter Kit 

board, an expansion board will be used to connect R-2R resistor ladder D/A converter to 

the Spartan-3E Starter Kit board. FX2 Breadboard will be used for an expansion board 

connecting via Hirose 100-pin FX2 Connector (J3) on the Spartan-3E Starter Kit board. 

There are various pin connections available for users including 40 I/O pins to connect 

with the Spartan-3E Starter Kit board and the FX2 Breadboard. These I/O connections 

are shared with other compartments on the Spartan-3E Starter Kit board, so you must be 

aware of the pin assignment when using an expansion board. The detailed pin assignment 

is listed on Table 15-1, Page 115 from Xilinx Spartan-3E Starter Kit Board User Guide. 

Also, you must pay attention to jumper settings on FX2 Breadboard to deliver power to 

VU(5.0V) and VCC(3.3V) busses. Read FX2 Breadboard Reference Manual to gain 

correct jumper settings for FX2 Breadboard. 
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3. Preliminary Design 

 
 In this laboratory, the R-2R resistor ladder D/A converter circuit will be constructed 

and tested. In addition to the external circuitry required, this circuit will require a four-bit 

counter to be constructed, using the Spartan-3E FPGA and VHDL. This counter must not 

only have the basic four-bit counter functionality, but must also have enable and 

synchronous clear inputs, as well as an additional triggering output. The counter should 

only advance when the enable input is logic high, and should reset to zero when the clear 

input is asserted. The triggering output should be logic high when the output of the 

counter is zero. This output will be used to trigger an oscilloscope in the laboratory in 

order to view the output voltage from the D/A converter. 

 

Before coming to lab, you should: 

 

1. Compute the analog output voltage, VOUT, for each input combination to the R-2R 

resistor ladder network shown in Figure 1, assuming a logic high digital input voltage 

of 3.3-volts and a logic low input voltage of 0.0-volts. Use a value of 1 KΩ for each R 

shown in the figure. List the input combinations along with the corresponding output 

voltages in a table and turn this in as part of your pre-laboratory. 

 

 HINT: You may wish to use superposition and Thevenin’s theorem rather than mesh 

or nodal analysis. 

 

2. Design a VHDL implementation of the four-bit counter described above. Be sure to 

include the functionality to enable/disable the counter, and to clear its outputs. In 

addition, include the triggering output to be presented as high when the output of the 

counter is zero. Your design should use the selectable frequency clock divider module 

from Appendix B of this laboratory. Include a printout of the VHDL code with your 

pre-laboratory work. 

 

4. In the Lab 

 
1. Enter your design for the four-bit counter circuit into the Xilinx ISE development 

environment. 

 

2. Simulate your design to ensure the proper functionality of the counter. If you included 

the clock division module in your design from the pre-laboratory, you must remove it 

from your circuit temporarily to allow for a manageable simulation. If your design 

does not simulate properly, correct all inconsistencies before continuing to the next 

section of this laboratory procedure. 

 

3. Construct the R-2R D/A converter circuit on the FX2 Breadboard. Connect the inputs 

for this circuit to the outputs from your counter module running on the Spartan-3E 

Starter Kit board, and set the counter to be continuously enabled. You should set your 

clock divider to produce 1Hz or 10Hz, in order to check the output correctly. 
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4. Connect the analog output of your D/A converter circuit to an oscilloscope, and use 

the trigger output of your counter module to trigger the oscilloscope. Measure the 

voltages output by your D/A converter for each input combination. Record these 

voltages in a table, and create a plot of the input digital value versus the output analog 

voltage. How do your measured voltages differ from the “ideal” voltages that you 

calculated in Pre-Laboratory Exercise 1? Be sure to discuss any differences you 

observe in your laboratory report. 

 

5. References 

 
For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 11: 

A/D Converters 
 

1. Purpose 
 

 This laboratory experiment will introduce some analog-to-digital (A/D) conversion 

circuits. The Spartan-3E Starter Kit board will be employed to use the counter module 

constructed for the circuit in the previous laboratory. 

 

2. Background 
 

  Digital processing has become increasingly important for manipulating analog 

signals needed in applications ranging from communications to motor control. In order to 

achieve these processing requirements, a method of converting analog signals into a 

digital format and back is necessary. An analog-to-digital converter is used to sample an 

analog signal at a given time, and to generate a digital approximation of the signal 

voltage at the time it was sampled. A series of these digital approximations may then be 

chained together to get a digital approximation of the original analog signal. Since only a 

finite number of bits are used to represent the signal voltage level, some precision is lost, 

but this conversion allows a digital processing element to manipulate the analog signal 

approximation. This laboratory experiment will introduce an example of this circuit to be 

implemented with the Spartan-3E Starter Kit board and some additional, externally 

supplied circuit elements.  

 

 The circuits involved with A/D conversion are more complex than the simple R-2R 

resistor ladder network presented in the previous laboratory. The basic idea for A/D 

conversion is that of comparing a digital approximation for an analog signal with a 

sampled value of the signal. A block diagram of this process is shown in the following 

figure.  

 

 
Figure 1 – Block diagram of a D/A converter. 
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 The analog voltage signal to be converted is first fed into a Sample and Hold (S/H) 

circuit. When the S/H circuit sees a rising edge of the Start signal, the analog voltage at 

its input is sampled, and this value is retained until the next rising edge on the Start 

signal. For the purposes of this experiment, we will not be concerned with the Sample 

and Hold circuitry; instead, we will simply be providing a constant analog input voltage 

to the A/D converter. The assertion of the Start signal is also used to begin the conversion 

process itself. The comparator block checks the sampled analog voltage, VAS, against the 

current analog estimate of the digital output signal, VEST. The estimation circuit adjusts 

its output with each clock cycle until the estimated voltage matches the sampled voltage 

as closely as possible. At this point, the estimation circuit asserts the Done signal and 

holds its output at the current value until the next Start signal is asserted. 

 While the previous discussion described the basic A/D conversion functionality, there 

are still a few details of the estimation circuit that have not been addressed. The simplest 

estimation circuit is composed of a counter that is initialized to zero when the start signal 

is asserted, and counts up one step with each clock tick if (VAS – VEST) > 0. If this 

condition is not true, (VAS –VEST)  0, the counter is disabled and its outputs will 

correspond to the digital conversion of the analog signal. This estimation circuit forms 

the heart of the sequential estimation A/D converter circuit that will be constructed in this 

laboratory. As long as the analog estimate of the digital output is less than the sampled 

value of the original analog signal, the estimate is increased incrementally, until the 

estimate becomes larger than the sampled analog voltage. This behavior produces the 

following output voltage behavior for a given analog input voltage. 

 

 
Figure 2 – Output waveform for a sequential estimation A/D conversion process. 
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3. Preliminary Design 
 

 In this laboratory, the sequential estimation A/D converter circuit will be constructed 

and tested. In addition to the external circuitry required, this circuit will require the four-

bit counter constructed in the previous laboratory using the Spartan-3E FPGA and 

VHDL.  

 

Before coming to lab, you should: 

 

1. Design a counter based sequential estimation A/D converter using the R-2R D/A 

converter, the counter circuit you designed for the previous laboratory, and the 

comparator circuit provided in Figure 3 below. The converter circuit should clear its 

output when the Start signal is asserted, and should count up until the comparator 

indicates that VEST > VAS. At this point, the estimation circuit should stop counting, 

and a Done signal should be asserted (you may use a logic low assertion). Be sure to 

include device pin numbers in your design. 

 

 
Figure 3 – Schematic for the comparator circuit. 

 

2. Assuming that the output of the estimation circuit for the A/D converter is in the 0.0 

to 3.3 voltage range, what is the input voltage range for VA, assuming the use of the 

four-bit R-2R resistor ladder network? 

 

3. Explain a method for modifying Figure 1 to allow the conversion of both positive and 

negative analog input voltages. Do not design any circuits for this bipolar converter; 

instead, simply outline the procedure. Remember, the D/A converter circuit only 

produces positive voltages. 

 

4. If the bipolar converter from the previous question were to be constructed, what 

would be the new range for the analog input voltage VA? 

 

5. What will happen to the output voltage from the estimation circuit if the analog input 

voltage is increased beyond the range calculated in the previous question? 
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4. In the Lab 
 

1. Construct the sequential estimation A/D converter you designed in Pre-Laboratory 

Exercise 3 and verify its functionality. For the +5V/-5V in the comparator, use the 

Power Supply. For VA, use the function generator, outputting no AC signal, and a DC 

offset of your desired analog voltage. Make sure all grounds (from the power supply, 

function generator, oscilloscope, Spartan-3E, and your circuit) are tied together. To 

prevent damage to the Spartan-3E Starter Kit board, test the output of your 

comparator circuit with the oscilloscope before connecting it to an input pin of the 

Spartan-3E FPGA. Be sure that the logic high output of the comparator does not 

exceed 3.3 volts, and that the logic low output does not drop below 0.0 volts. If either 

of these voltage thresholds is exceeded, adjust the power supply voltages to the 

operational amplifier to get the output voltages within the correct range. 

 

2. Create a table and record the voltage ranges corresponding to each output bit pattern 

(0 to 15) for your circuit. How do these input voltage ranges compare to those of an 

“ideal” A/D converter? When you are sure your converter circuit is functioning 

properly, demonstrate its operation to your laboratory instructor. 

 

3. Calculate the worst-case conversion time for your A/D converter and discuss this 

result in your laboratory report. 

 

5. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Laboratory Experiment 12: 

Successive Approximation A/D Converter 
 

1. Purpose 
 

 The previous laboratory experiment introduced the concepts of D/A and A/D 

conversion, and this laboratory will introduce a new A/D conversion technique. A 

successive approximation A/D converter will be designed and implemented, using the 

Spartan-3E Starter Kit board. This type of A/D converter produces more uniform 

conversion times than the sequential estimation circuit used in the previous laboratory. 

 

2. Background 
 

 The sequential estimation A/D converter circuit designed in the previous laboratory 

experiment, while simple to construct, produces conversion times that may vary widely. 

For a small analog input voltage, the conversion time to a digital value will be relatively 

short, but for a large analog input voltage, a four-bit A/D converter will have a worst-case 

conversion time of 16 clock cycles. There are several techniques that may be used to 

improve upon the performance of the A/D converter, and one of these techniques is the 

Successive Approximation conversion approach. 

 

2.1 Successive Approximation A/D Conversion 

 

 Rather than simply counting up to obtain an input voltage estimate, the successive 

approximation A/D converter sets individual output bits and tests their effects on the 

estimated voltage. A given digital conversion process begins with setting the most 

significant bit of the digital output to one, and observing the comparison of the estimated 

voltage, VEST, with the actual analog input, VA. If VEST is greater than VA, then the most 

significant bit is reset to zero, and the process repeats with the next most significant bit. 

If, on the other hand, the estimate is less than the analog input voltage, the first bit is 

allowed to stay at one, and the next most significant bit is set and tested. This process is 

repeated until all the bits of the digital output have been appropriately set. Ultimately, the 

resulting digital output will have an analog conversion that is slightly less than the actual 

analog input. This may be compared to the sequential estimation A/D converter, where 

the analog conversion of the digital output was slightly greater than the actual analog 

voltage input. The overall conversion process is faster than that for the worst-case of the 

sequential estimation A/D converter. Whereas, an n-bit sequential estimation A/D 

converter has a worst-case conversion time of 2
n
-1 clock cycles, an n-bit successive 

approximation A/D converter has a worst-case conversion time of n clock cycles. The 

following figure shows an example of a complete conversion process, using a successive 

approximation A/D converter. 
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Figure 1 – A complete successive approximation A/D conversion process. 

 

2.2 Constructing a Successive Approximation A/D Converter 

 

 All of the conversion functionality of the successive approximation A/D converter 

may be summed up quite nicely in a flowchart describing an Algorithmic State Machine 

(ASM). Figure 2 below shows just such a flowchart. 

 

 
Figure 2 – ASM chart for the successive approximation A/D converter. 
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 In the initial WAIT state, this circuit loops, waiting for a START signal telling it to 

initiate a new conversion process. While the circuit waits, it outputs a DONE signal in 

order to let any interface hardware know that the previous conversion has completed, the 

output may be read, and a new conversion may be initiated at any time. When the START 

signal is asserted, the bits of the digital output (B3 to B0) are cleared in preparation for 

the set-and-test operations that will begin shortly. In the TST3 state, the most significant 

bit of the digital output is set to one, and the resulting voltage estimate is compared to the 

analog input, using an external comparator circuit. If the estimate is larger than the analog 

input, the bit that was set must be cleared. If the estimate is still less than the analog input 

voltage, the bit that was set may be left alone. When this testing process is completed, the 

device will proceed to the TST2 state. This state performs the same operations as the 

TST3 state, only it operates on the second most significant bit of the digital output. Each 

of the following states operates on a successively less significant bit, until all four bits for 

this four-bit A/D converter have been appropriately set. 

 

3. Preliminary Design 
 

 This laboratory experiment will make use of both the R-2R resistor ladder network, 

and the voltage comparator circuits from the previous laboratory. These circuits will be 

constructed and tied together in the same manner as for testing the sequential estimation 

A/D converter circuit. Like the previous laboratory experiment, all the digital 

functionality of the successive approximation A/D converter will be implemented using 

the Spartan-II FPGA on the Spartan-3E Starter Kit board. The following figure shows a 

block diagram of the successive approximation A/D converter. 

 

 
Figure 3 – Block diagram of a successive approximation A/D converter. 

 

Before coming to lab, you should: 

 

1. Design a VHDL implementation of the four-bit successive approximation A/D 

converter described in the ASM diagram of Figure 2. Be sure to include a RESET 

signal in your design that, when asserted, will put the device in the WAIT state. In the 

laboratory, you will need to use one of the clock divider modules supplied in 

Appendix B of this laboratory manual. In order to test your design, however, the 

module you chose to employ must be removed; therefore, you may decide to include 

the module now or in the laboratory. 
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2. Draw a schematic diagram of your complete successive approximation A/D 

converter, including the comparator circuit, the FPGA implementation of the 

converter itself, and the D/A resistor ladder converter. Be sure to include pin numbers 

for all circuit components. 

 

3. Draw a timing diagram for the analog-to-digital conversion shown in Figure 1, in the 

Background section of this laboratory. Be sure to show the state of the device and 

output bit values as the conversion process proceeds. 

 

4. As was discussed in the Background section of this laboratory, the analog conversion 

of the final digital output from one of these circuits may not match the analog input 

voltage exactly. Instead, there is usually some error between the output voltage 

estimate, VEST, and the actual analog input, VA. Let 

ESTA VVE   

 Write an equation for the maximum error, E, in terms of the total conversion voltage 

range Vr, and the number of bits, n, in the digital output. Using this equation, 

calculate the maximum error, in volts, when Vr = 5V, and n = 4. Repeat this exercise 

with Vr = 5V and n = 8. 

 

4. In the Lab 
 

1. Enter your design for the four-bit successive approximation A/D converter circuit into 

the Xilinx ISE development environment. 

 

2. Simulate your design to ensure the proper functionality of the converter. If you 

included the clock division module in your design from the pre-laboratory, you must 

remove it from your circuit temporarily, to allow for a manageable simulation. If your 

design does not simulate properly, correct all inconsistencies before continuing to the 

next section of this laboratory procedure. 

 

3. Construct the complete successive approximation A/D converter circuit you designed 

in Pre-Laboratory Exercise 2, and verify its functionality. To prevent damage to the 

Spartan-3E Starter Kit board, test the output of your comparator circuit before 

connecting it to an input pin of the Spartan-3E FPGA. Be sure that the logic high 

output of the comparator does not exceed 3.3 volts, and that the logic low output does 

not drop below 0.0 volts. If either of these voltage thresholds is exceeded, adjust the 

power supply voltages to the operational amplifier to get the output voltages within 

the correct range. 

 

4. Create a table and record the input voltage ranges corresponding to each output bit 

pattern (0 to 15) for your circuit. Observe these input voltage ranges and note any 

variations in regularity in your laboratory report. When you are sure that your 

converter circuit is functioning properly, demonstrate its operation to your laboratory 

instructor. 

 



 

Laboratory Experiment 12-5 

 

5. In your laboratory report, discuss some of the functional differences between the 

sequential estimation and successive approximation A/D converters. Be sure to point 

out some advantages and disadvantages of each design. Is there ever an instance 

where the sequential estimation A/D converter will be faster than the successive 

approximation A/D converter? 

 

5. References 
 

For further information on digital logic design, consult: 

1. Mano, Morris M. Digital Design. New Jersey: Prentice Hall. 

2. Wakerly, John F. (2001). Digital Design Principles & Practices Third Edition. 

  New Jersey: Prentice Hall. 
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Appendix A: 

Spartan-3E Starter Kit board Pin Mappings 
 

Board Designator Spartan-3e Pin Number   

SW0 L13 

B
o

a
rd

 

S
w

it
c
h

e
s
 

SW1 L14 

SW2 H18 

SW3 N17 

J1-SW0 B4 

J
1

  
 P

M
O

D
 

S
w

it
c
h

e
s
 

J1-SW1 A4 

J1-SW2 D5 

J1-SW3 C5 

J2-SW0 A6 

J
2

  
 P

M
O

D
 

S
w

it
c
h

e
s
 

J2-SW1 B6 

J2-SW2 E7 

J2-SW3 F7 

BTN_NORTH V4 

P
u

s
h

 

B
u

tt
o

n
s
 

BTN_EAST H13 

BTN_SOUTH K17 

BTN_WEST D18 

ROT_A K18 

R
o

ta
ry

 

D
ia

l 

ROT_B G18 

ROT_CENTER V16 

LED0 F12 

B
o

a
rd

 L
E

D
s
 LED1 E12 

LED2 E11 

LED3 F11 

LED4 C11 

LED5 D11 

LED6 E9 

LED7 F9 

LCD_DB_4 R15 

C
h

a
ra

c
te

r 
L
C

D
 

LCD_DB_5 R16 

LCD_DB_6 P17 

LCD_DB_7 M15 

LCD_E M18 

LCD_RS L18 

LCD_RW L17 
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Possible Clock Sources 

Spartan-3e Pin Number Description 

C9 Main board 50 MHz crystal oscillator. 

B8 Auxiliary clock oscillator socket. 

A10 SMA clock connector. 
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Appendix B: 

VHDL 50-MHz Clock Divider Modules 
 

1. 1 Hz Clock Generator 
 

This first code module may be used to generate a clock rate of approximately 1 Hz 

using a 50 MHz crystal oscillator provided on the Spartan-3E Starter Kit board. In order 

to produce the correct output from this module, the input clock signal must be mapped to 

pin C9 of the Spartan-3e FPGA. This pin is tied directly to the output of the 50 MHz 

crystal oscillator, and is divided down by this code module to produce a bounce-free, 1 

Hz clock signal. 

 
-- One hertz clock divider code. 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity one_hz_clock is 

    Port ( clk : in std_logic; 

           one_hz : out std_logic); 

end one_hz_clock; 

 

architecture Behavioral of one_hz_clock is 

 

begin 

 

 process (clk)           -- Start a process. 

 variable count : integer := 0;   -- Variable declaration. 

 begin 

  if clk = '1' and clk'event then  -- Rising edge detection. 

   count := count + 1; 

 

   if count = 50000000 then    -- Taken off a 50MHz clock. 

    count := 0;         -- Reset count for next cycle. 

   end if; 

 

   if count >= 0 and count <= 25000000 then 

    one_hz <= '1';       -- High portion of 1 HZ clock. 

   else  

    one_hz <= '0';       -- Low portion of 1 HZ clock. 

   end if; 

  end if; 

 end process; 

 

end Behavioral;
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2. Selectable Output Frequency Clock Divider 
 

This second code module also achieves division of the 50 MHz signal from the 

crystal oscillator, but this module allows the output clock rate to be selected from four 

values based upon two extra input signal values. The following table shows the resulting 

output clock rate for each input combination possible: 

 

s1 s0 Output Clock Frequency 

0 0 1/10 Hz 

0 1 1 Hz 

1 0 10 Hz 

1 1 1 KHz 

Table 1 – Mapping of selection inputs to output clock frequencies. 

 

It may be desirable to utilize this clock divider circuit in the event that a sequential 

circuit design allows for two or more unused board toggle switches. The behavior of the 

design may then be observed at a variety of different rates, including one that most likely 

may only be viewed using a logic analyzer. 

 
-- Selectable output frequency clock divider code. 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity selectable_clock is 

    Port ( clk : in std_logic; 

           s0 : in std_logic; 

           s1 : in std_logic; 

           out_clk : out std_logic); 

end selectable_clock; 

 

-- If s1 and s0 are both low, the output clock rate is 1/10 Hz. 

-- If s1 is low and s0 is high, the output clock rate is 1 Hz. 

-- If s1 is high and s0 is low, the output clock rate is 10 Hz. 

-- If s1 and s0 are both high, the output clock rate is 1 KHz. 

 

architecture Behavioral of selectable_clock is 

 

begin 

 

 process (clk, s0, s1)       -- Start a process. 

 variable count : integer := 0;   -- Variable declaration. 

 begin 

  if clk = '1' and clk'event then  -- Rising edge detection. 

   count := count + 1; 

 

   -- Code to create the 1/10 Hz clock. 

   if s0 = '0' and s1 = '0' then 

    if count >= 500000000 then  -- Taken off a 50MHz clock. 

     count := 0;        -- Reset count for next cycle. 

    end if; 
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    if count >= 0 and count <= 250000000 then 

     out_clk <= '1';      -- High portion of 1/10 HZ clock. 

    else  

     out_clk <= '0';      -- Low portion of 1/10 HZ clock. 

    end if; 

   end if; 

 

   -- Code to create the 1 Hz clock. 

   if s0 = '1' and s1 = '0' then 

    if count >= 50000000 then  -- Taken off a 50MHz clock. 

     count := 0;        -- Reset count for next cycle. 

    end if; 

 

    if count >= 0 and count <= 25000000 then 

     out_clk <= '1';      -- High portion of 1 HZ clock. 

    else  

     out_clk <= '0';      -- Low portion of 1 HZ clock. 

    end if; 

   end if; 

 

   -- Code to create the 10 Hz clock. 

   if s0 = '0' and s1 = '1' then 

    if count >= 5000000 then   -- Taken off a 50MHz clock. 

     count := 0;        -- Reset count for next cycle. 

    end if; 

 

    if count >= 0 and count <= 2500000 then 

     out_clk <= '1';      -- High portion of 10 HZ clock. 

    else  

     out_clk <= '0';      -- Low portion of 10 HZ clock. 

    end if; 

   end if; 

 

   -- Code to create the 1 KHz clock. 

   if s0 = '1' and s1 = '1' then 

    if count >= 50000 then    -- Taken off a 50MHz clock. 

     count := 0;        -- Reset count for next cycle. 

    end if; 

 

    if count >= 0 and count <= 25000 then 

     out_clk <= '1';      -- High portion of 1 KHz clock. 

    else  

     out_clk <= '0';      -- Low portion of 1 KHz clock. 

    end if; 

   end if; 

 

  end if; 

 end process; 

 

end Behavioral; 
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Appendix C: 

Adding Additional Logic to the Spartan-3E Starter Kit board 

 

1. Motivation 
 

As the designs you wish to download to the Spartan-3E Starter Kit board become 

more complex, you may find that the main board does not contain enough logic switches 

to manipulate all the inputs of your circuit. In this event, it may be desirable to add 

several logic switches to the test board, thereby increasing the input capabilities of the 

board. This task is relatively simple with the correct supplies and a little time. 

 

2. Supply List 
 

- FX2 expansion board 

- DIP-Switch Package 

- 4.7 KΩ Resistors 

 

3. Connection Procedure 
 

First, it should be noted that while it is possible to add DIP switches to the Spartan-3E 

Starter Kit board utilizing a separate, user provided breadboard, the use of only the FX2-

BB board is highly recommended. This breadboard will minimize the possibility of 

incorrect connections that may permanently damage the test board. 

The Xilinx XC3S500E Spartan-3E FPGA that the Spartan-3E Starter Kit board is 

designed around uses a 3.3 V LVTTL/LVCMOS voltage level for its inputs and outputs. 

This means that while a logic low input is still represented by 0.0 V, a logic high input is 

represented by only 3.3 V. This is a critical note when building any interface hardware 

for the Spartan-3E Starter Kit board, because if standard TTL voltage levels are 

interfaced to the Spartan-II FPGA, the chip may be permanently damaged.  

 

In order to add a logic switch to the Spartan-3E Starter Kit board, two resistors and 

some jumper wires are needed. The following schematic shows how to create one such 

logic switch. 

 
Figure 1 – Schematic for an additional logic switch. 

  

4.7 K Ω   

Spartan 3   
Input Pin   

V DD   DI   
Switch   

4.7 K Ω   
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One resistor in the schematic presented in Figure 1 is used to pull down the logic 

level of the Spartan-3E input pin when the DIP-switch is open, producing a logic low. 

The other resistor is responsible for providing input protection to the Spartan-3E input 

pin. When the switch is closed, the Spartan-3E input pin is presented with a logic high, 

and the resistor is then used to limit the current flow in the system, preventing a short of 

VDD to ground. 

The schematic presented in Figure 1 should be replicated for each additional logic 

switch to be added to the Spartan-3E Starter Kit board. In order to utilize the logic 

switches that are added to the test board, they must be connected to input pins of the 

Spartan-3E FPGA that are not already connected to other I/O devices. If an added DIP-

switch were to be connected to a Spartan-3E pin already in use, this could result in a short 

that could damage the Spartan-3E Starter Kit board. It should be mentioned that IO1 to 

IO20 are shared with LEDs, J1, J2 and J4 of Spartan-3E Starter Kit board. 

 

4. List of Available Spartan-3E I/O Pins 
 

The following table lists the Spartan-3E I/O pins that may be assigned to additional 

logic switches added to the Spartan-3E Starter Kit board. 

 
Starter KIT 

Expansion 

Connection 

(J3) 

FX2 

Expansion 

Connection 

(J12) 

Spartan-3E 

Pin Number 

A6 IO1 B4 

A7 IO2 A4 

A8 IO3 D5 

A9 IO4 C5 

A10 IO5 A6 

A11 IO6 B6 

A12 IO7 E7 

A13 IO8 F7 

A14 IO9 D7 

A15 IO10 C7 

A16 IO11 F8 

A17 IO12 E8 

A18 IO13 F9 

A19 IO14 E9 

A20 IO15 D11 

A21 IO16 C11 

A22 IO17 F11 

A23 IO18 E11 

A24 IO19 E12 

A25 IO20 F12 

A26 IO21 A13 

A27 IO22 B13 

A28 IO23 A14 

A29 IO24 B14 

A30 IO25 C14 

A31 IO26 D14 

A32 IO27 A16 

A33 IO28 B16 

A34 IO29 E13 

A35 IO30 C4 

A36 IO31 B11 
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A37 IO32 A11 

A38 IO33 A8 

A39 IO34 G9 

A40 IO35 D12 

A41 IO36 C12 

A42 IO37 A15 

A43 IO38 B15 

A44 IO39 C3 

A45 IO40 C15 

 

Table 1 – List of Spartan-3E I/O pins and their connector mappings. 

 

5. How to connect the FX2-BB Expansion Board 
 

The board can be seen in Figure 2 below.  

 

Figure 2 – Picture of FX2-BB Expansion Board 

 

The 100-pin connector at the left is connected to the Spartan-3E. Make sure that the 

jumpers above and below the connector are in place, ensuring that power is supplied to 

the VU (5.0V) and VCC (3.3V) buses on the board. The 40 I/O pins can be found to the 

right of the connector. GND, VU, and VCC can be found just to the right of I/O pin 1. 

Make sure that the ground in your circuit is tied to the ground of the Spartan, as well as to 

the grounds of any additional instruments you are using. 
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Appendix D: 

Pushbutton Switch De-bouncer Module 
 

This code module may be used to de-bounce the pushbutton switches on the Spartan-

3E Starter Kit board.  The input to this module may be attached to any of the on-board 

pushbutton switches, and the clock must be tied to pin C9 of the Spartan-3E FPGA.  In 

this configuration, when the pushbutton switch is high for 1,000,000 continuous clock 

cycles (approximately 20 ms), the output of the module will go to high for the remainder 

of the duration for which the switch is activated. 

 
-- Pushbutton debouncer code module. 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity debouncer is 

    Port ( input : in std_logic; 

           clk : in std_logic; 

           output : out std_logic); 

end debouncer; 

 

architecture Behavioral of debouncer is 

 

begin 

 

 process (clk, input)        -- Start a process. 

 variable count : integer := 0;   -- Variable declaration. 

 begin 

  if clk = '1' and clk'event then  -- Rising edge detection. 

   if input = '1' then      -- Input is high at clock. 

    count := count + 1;        -- Increment count. 

   else             -- Input is low at clock. 

    count := 0;         -- Reset count. 

   end if; 

 

   if count > 1000000 then     -- Input high long enough to 

                 -- output. 

    output <= '1';       -- Output high. 

   else             -- Input not high long enough. 

    output <= '0';       -- Output low. 

   end if; 

  end if; 

 end process; 

 

end Behavioral; 
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Appendix E: 

ASCII-I and ASCII-II Tables 

 

 The following tables contain the ASCII-I and ASCII-II characters along with their 

decimal and hexadecimal equivalents. 

 
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char 

0 00 Null 32 20 Space 64 40 @ 96 60 ` 

1 01 Start of Heading 33 21 ! 65 41 A 97 61 a 

2 02 Start of Text 34 22 “ 66 42 B 98 62 b 

3 03 End of Text 35 23 # 67 43 C 99 63 c 

4 04 End of Transmit 36 24 $ 68 44 D 100 64 d 

5 05 Enquiry 37 25 % 69 45 E 101 65 e 

6 06 Acknowledge 38 26 & 70 46 F 102 66 f 

7 07 Audible Bell 39 27 ' 71 47 G 103 67 g 

8 08 Backspace 40 28 ( 72 48 H 104 68 h 

9 09 Horizontal Tab 41 29 ) 73 49 I 105 69 i 

10 0A Line Feed 42 2A * 74 4A J 106 6A j 

11 0B Vertical Tab 43 2B + 75 4B K 107 6B k 

12 0C Form Feed 44 2C ‘ 76 4C L 108 6C l 

13 0D Carriage Return 45 2D - 77 4D M 109 6D m 

14 0E Shift Out 46 2E . 78 4E N 110 6E n 

15 0F Shift In 47 2F / 79 4F O 111 6F o 

16 10 Data Link Escape 48 30 0 80 50 P 112 70 p 

17 11 Device Control 1 49 31 1 81 51 Q 113 71 q 

18 12 Device Control 2 50 32 2 82 52 R 114 72 r 

19 13 Device Control 3 51 33 3 83 53 S 115 73 s 

20 14 Device Control 4 52 34 4 84 54 T 116 74 t 

21 15 Neg. Acknowledge 53 35 5 85 55 U 117 75 u 

22 16 Synchronous Idle 54 36 6 86 56 V 118 76 v 

23 17 End Trans. Block 55 37 7 87 57 W 119 77 w 

24 18 Cancel 56 38 8 88 58 X 120 78 x 

25 19 End of Medium 57 39 9 89 59 Y 121 79 y 

26 1A Substitution 58 3A : 90 5A Z 122 7A z 

27 1B Escape 59 3B ; 91 5B [ 123 7B { 

28 1C File Separator 60 3C < 92 5C \ 124 7C | 

29 1D Group Separator 61 3D = 93 5D ] 125 7D } 

30 1E Record Separator 62 3E > 94 5E ^ 126 7E ~ 

31 1F Unit Separator 63 3F ? 95 5F _ 127 7F  

Table 1 – ASCII-I Values. 
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Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char 

128 80 Ç 160 A0 á 192 C0 └ 224 E0 α 

129 81 ü 161 A1 í 193 C1 ┴ 225 E1 β 

130 82 é 162 A2 ó 194 C2 ┬ 226 E2 Г 

131 83 â 163 A3 ú 195 C3 ├ 227 E3 π 

132 84 ä 164 A4 ñ 196 C4 ─ 228 E4 Σ 

133 85 à 165 A5 Ñ 197 C5 ┼ 229 E5 σ 

134 86 å 166 A6 ª 198 C6 ╞ 230 E6 μ 

135 87 ç 167 A7 ° 199 C7 ╟ 231 E7 τ 

136 88 ê 168 A8 ¿ 200 C8 ╚ 232 E8 Ф 

137 89 ë 169 A9 ⌐ 201 C9 ╔ 233 E9 Θ 

138 8A è 170 AA ¬ 202 CA ╩ 234 EA Ω 

139 8B ï 171 AB ½ 203 CB ╦ 235 EB δ 

140 8C î 172 AC ¼ 204 CC ╠ 236 EC ∞ 

141 8D ì 173 AD ¡ 205 CD ═ 237 ED  

142 8E Ä 174 AE « 206 CE ╬ 238 EE ε 

143 8F Å 175 AF » 207 CF ╧ 239 EF ∩ 

144 90 É 176 B0 ░ 208 D0 ╨ 240 F0 ≡ 

145 91 æ 177 B1 ▒ 209 D1 ╤ 241 F1 ± 

146 92 Æ 178 B2 ▓ 210 D2 ╥ 242 F2 ≥ 

147 93 ô 179 B3 │ 211 D3 ╙ 243 F3 ≤ 

148 94 ö 180 B4 ┤ 212 D4 ╘ 244 F4  

149 95 ò 181 B5 ╡ 213 D5 ╒ 245 F5  

150 96 û 182 B6 ╢ 214 D6 ╓ 246 F6  

151 97 ù 183 B7 ╖ 215 D7 ╫ 247 F7 ~ 

152 98 ÿ 184 B8 ╕ 216 D8 ╪ 248 F8 ˚ 

153 99 Ö 185 B9 ╣ 217 D9 ┘ 249 F9 ˙ 

154 9A Ü 186 BA ║ 218 DA ┌ 250 FA ∙ 

155 9B ¢ 187 BB ╗ 219 DB █ 251 FB √ 

156 9C £ 288 BC ╝ 220 DC ▄ 252 FC ⁿ 

157 9D ¥ 189 BD ╜ 221 DD ▌ 253 FD f 

158 9E ₧ 190 BE ╛ 222 DE ▐ 254 FE ■ 

159 9F ƒ 191 BF ┐ 223 DF ▀ 255 FF  

Table 2 – ASCII-II Values. 
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