Final Project
Serial Transmitter/Receiver
ECE 446

Peter CHINETTI

December 2, 2014

Instructor: Professor SHANECHI

Contents
1 Abstract

2 Implementation
2.1 Transmitter
2.2 Receiver

3 Flow Charts
3.1 Transmittero
3.2 Receiver

4 Code Listings
4.1 Full Transmitter Receiver Pair
4.2 Transmitter
4.3 Receiver
4.3.1 Receiver Clock Divider
4.4 Clock Divider

5 Implementation Constraints

6 Engineering and Design Challenges
7 DPossibilities for Expansion

8 Alternative Techniques

9 Conclusion

w W

15

15

15

15

16

1 Abstract

For this project, a simple serial receiver/transmitter pair was built. The pair
operates at a selectable baud rate (1 or 10 baud). It was written in VHDL for
implementation on the Spartan-3E FPGA board.

2 Implementation

The project is broken into two major components:

2.1 Transmitter

The transmitter is simple, a FSM looping between the states of idleness and
transmission. The ports to the module are a 8 bit data vector, a ready line to
signal the transmitter that the input vector has settled, a clock fed at the baud
rate, an output to signal to the device feeding data transmission completed, and
the transmission line.

From the idle state, after the input vector is loaded with data to be transmit-
ted, the user must assert the ready signal. This prevents the transmission from
starting before the correct data is loaded. After transmission has completed,
the transmitter with assert its done signal, informing the user that new data
can be loaded safely. The data on the input vector must remain stable between
the time that the ready input is asserted and the done signal replies.

2.2 Recelver

The receiver is more complicated, to account for the asynchronous nature of
the serial signal. It too is a state machine, but it has two ‘clocks’ the clk input
is connected to a source running at 16 times the baud rate, and a resettable
counter that divides that clock by 16. When the falling edge that starts the
byte is sensed, the counter is aligned to sample at the center of each bit.

On the receiver, the done signal is asserted when the receiver is in an idle
state, and the output vector can be safely sampled. If the done signal is not
asserted, the vector is loading new data. The err signal is asserted if there is a
framing error, informing the user to discard the output vector.

3 Flow Charts

3.1 Transmitter

ldle

Ready

Disable Done
Signal

!

Start Bit

Y

Data bits

A 4

End Bit

!

Enable Done
Signal

No

3.2

Receiver

) ldle —

Falling Edge?

Reset
Clock Divider

Clock Divider
Trigger?

Clock Divider
Trigger?

Read Bit

Set Err

Clear Err

4 Code Listings

4.1 Full Transmitter Receiver Pair

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity rx_tx is
Port (din : in STDLOGIC.VECTOR (7 downto 0);
dout : out STDLOGIC.VECTOR (7 downto 0);
speed : in STD_LOGIC;
clk: in STD_LOGIC;

strataflash_oe : out std_logic;
strataflash_ce : out std_-logic;
strataflash_we : out std_logic;

led-d : inout std_-logic_vector (7 downto 4);
lcd_rs : out std-logic;
led_-rw : out std_-logic;
led_e : out std_-logic);
end rx_tx;

architecture Behavioral of rx_tx is
component rx is
Port (rx-line : in STD_LOGIC;
clk : in STD_LOGIC;
err : out STDLOGIC := ’17;

data : out STDLOGIC.VECTOR (7 downto 0) := 700000000” ;

ready : out STD_LOGIC);

end component ;

component tx is

Port (clk : in STD_LOGIC;

ready: in STD_LOGIC;
data : in STDLOGIC.VECTOR (7 downto 0);
tx_line : out STD_LOGIC;
done : out STD_LOGIC);

end component ;

component LCD_IF is

Port (intl : in std_logic_vector (3 downto 0);
int2 : in std-logic_vector (3 downto 0);
int3 : in std_-logic_vector (3 downto 0);
int4 : in std-logic_vector (3 downto 0);
strataflash_oe : out std_logic;
strataflash_ce : out std_-logic;
strataflash_we : out std_logic;

led-d : inout std_-logic_-vector (7 downto 4);
led_rs : out std-logic;
led_rw : out std_logic;
lcd_-e : out std-logic;
clk_.50mhz : in std_logic);
end component ;

—The selectable clocks feed the data rates required for 1 and

baud comms
—as well as the 16x multiplied clock the rx side needs.
component selectable_clock is
Port (clk : in std_logic;
sO : in std_logic;

10

53 sl : in std_logic;

out_clk : out std_logic);

55 end component;

signal input_buffer , output_-buffer : STDLOGIC.VECTOR(7 downto 0)
57 signal rx_sel_0, rx_sel-1, tx_sel_.0, tx_sel_1 : STD_LOGIC;

signal rx_clk, tx_clk : STD_LOGIC;

59 signal tx_ready, tx_-done : STD_LOGIC;

signal comms_line : STD_LOGIC;

61 signal rx_ready, rx_err : STD_LOGIC;
63| begin

tx_0 : tx
65 port map(

clk = tx_clk,
67 ready => tx_ready ,
data => input_buffer ,

69 tx_line => comms_line,
done => tx_done);
71 rx-0 : rx
port map(
73 rx_line => comms_line,

clk = rx_clk,

75 err => rx._err ,

data => output_buffer ,

77 ready => rx_ready);

rx_clk_sel : selectable_clock

79 port map(

clk = clk,

81 s0 => rx._sel_0 ,

sl => rx_sel_1,

83 out_clk => rx_clk);

tx_clk_sel : selectable_clock

85 port map(

clk = clk,

87 s0 => tx-sel_0,

sl => tx_sel_1,

89 out_clk => tx_clk);

led.0 : LCD.IF

91 port map(

intl => input_buffer (3 downto 0),
93 int2 => input_buffer (7 downto 4),
int3 => output_buffer (3 downto 0),
95 int4d => output_buffer (7 downto 4),
strataflash_oe => strataflash_oe,
97 strataflash_ce => strataflash_ce ,
strataflash_we => strataflash_we,
99 led_.d => lcd.d,

led_-rs => lecd._rs ,

101 led.rw => led_rw,

lcd_e => lcd_e,

103 clk_-50mhz => clk);

—locking the tx ready line ready to transmit
105 tx_ready <= '17;

process (tx_done, din)

107 begin

—using the ’done’ line for flow control instead

109 if tx_done = 1’ then
input_buffer <= din;

111 end if;
end process;
113 process(rx.ready , rx_err, output_buffer)
begin
115 —+this might be hard to debug, as errors are opaque
if rx_.ready = ’1’ and rx_err = ’0’ then
117 dout <= output_buffer;
end if;
119 end process;
process (speed)
121 begin
if speed = ’1’ then
123 —10 baud rx/tx

—rx runs at 160 Hz
125 rx_sel_ 0 <= ’17;
rx_sel_1 <= ’17;

127 —1tx runs at 10 Hz
tx_sel-0 <= '07;
129 tx_sel_1 <= ’17;
else
131 —1 baud rx/tx
—rx runs at 16 Hz
133 rx_sel_ 0 <= ’0’;
rx_sel_1 <= ’0’;
135 —tx runs at 1 Hz
tx_sel .0 <= '17;
37 tx_sel-1 <= '07;
end if;

139 end process;
end Behavioral;

../RS-232/rx_tx.vhd

4.2 Transmitter

1| library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity tx is
Port (clk : in STD_LOGIC;
7 ready: in STD_LOGIC;
data : in STDLOGIC.VECTOR (7 downto 0);
9 tx_line : out STD_LOGIC;
done : out STD_LOGIC);

11| end tx;

13| architecture Behavioral of tx is

type state is (idle, start_bit, bit_0, bit_1, bit_-2, bit-3, bit_4,
bit_5, bit_6, bit_-7, stop_bit);

15| signal f : state;

signal p : state := idle;

19

39

61

69

begin
process (clk)
begin
— FSM based implementation switches at the
if rising_edge(clk) then
p <= f;
end if;
end process;

process (p,ready, data)
begin
case p is
when idle =>
——The ready line unlocks the FSM
——from it ’s idle state. It exists
—+to allow the input lines to settle
tx_line <= ’17;
done <= ’17;
if ready = ’1’ then
f <= start_bit;
else
f <= idle;
end if;
when start_bit =>
done <= '07;
tx_line <= ’07;
f <= bit_0;
when bit_0 =>
tx_line <= data(7);
f <= bit_1;
when bit_1 =>
tx_line <= data(6);
f <= bit_2;
when bit_2 =>
tx_line <= data(5);
f <= bit_3;
when bit_3 =>
tx_line <= data(4);
f <= bit_4;
when bit_4 =>
tx_line <= data(3);
f <= bit_5;
when bit_5 =>
tx_line <= data(2);
f <= bit_6;
when bit_6 =>
tx_line <= data(1);
f <= bit.7;
when bit_7 =>
tx_line <= data(0);
f <= stop_-bit;
when stop_-bit =>
tx_line <= ’'17;
f <= idle;
end case;

sl end process;

clocks

75| end Behavioral;

../RS—-232/tx.vhd

4.3 Receiver

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

N

entity rx is

6 Port (rx_-line : in STD_LOGIC;

clk : in STD_LOGIC;

8 err : out STDLOGIC := ’'17;

data : out STD.LOGIC.VECTOR (7 downto 0) := 00000000 ;
10 ready : out STD_LOGIC);

end rx;

architecture Behavioral of rx is

14 component clk_sampler is
Port (reset : in STD_LOGIC;
16 clk :in STD_LOGIC;
full : out STD_LOGIC);
18 end component;

signal sampler_full , sampler_reset : STD_LOGIC;
20 type state is (idle, start_bit, bit_0, bit_1, bit_2, bit_-3, bit_4
, bit_5, bit_6, bit_-7, stop_bit);

signal f : state;
22 signal p : state := idle;
begin
24 cs_0 : clk_sampler
port map(
26 clk => clk,
reset => sampler_reset ,
28 full = sampler_full);
process (clk)
30 begin
32 if rising-edge(clk) then
p <= f;
34 end if;
end process;
36 process(rx_line , sampler_full , p)
begin
38 case p is
when idle =>
10 if rx_line = ’0’ then
—falling edge of start bit detected,
42 —reset the clock divider to 1/2 period
sampler_reset <= ’17;
14 f <= start_bit;
end if;
16 ready <= ’'1’;
when start_bit =>
18 ready <= ’0’;

10

sampler_reset <= ’07;

50 if sampler_full = 1’ then
if rx_line = 0’ then

52 f <= bit_-0;

else

54 f <= idle;

end if;

56 end if;

when bit_0 =>

58 data(7) <= rx_line;

if sampler_full = ’1’ then
60 f <= bit_1;

else

62 f <= bit_0;

end if;

64 when bit_1 =>

data(6) <= rx_line;

66 if sampler_full = ’1’ then
f <= bit_2;

68 else

f <= bit_1;

70 end if;

when bit_2 =>

72 data(5) <= rx_line;

if sampler_full = 1’ then
74 f <= bit_3;

else

76 f <= bit_2;

end if;

78 when bit_3 =>

data(4) <= rx_line;

80 if sampler_full = ’1’ then
f <= bit_4;

82 else

f <= bit_3;

84 end if;

when bit_4 =>

86 data(3) <= rx_line;

if sampler_full = ’1’ then
88 f <= bit_5;

else

90 f <= bit_4;

end if;

92 when bit_5 =>

data(2) <= rx_line;

94 if sampler_full = ’1’ then
f <= bit_6;

96 else
f <= bit_5;

08 end if;

when bit_6 =>

100 data(l) <= rx_line;

if sampler_full = ’1’ then
102 f <= bit_7;

else

104 f <= bit_6;

end if;

11

106 when bit_7 =>

data (0) <= rx_line;

108 if sampler_full = ’1’ then
f <= stop_-bit;

110 else

f <= bit_7;

112 end if;

when stop_-bit =>

114 if sampler_full = 1’ then
if rx_line = 1’ then
116 err <= ’'0’;

else

118 err <= ’'17;

end if;

120 f <= idle;

else

122 f <= stop-bit;

end if;

124 end case;

126 end process;

end Behavioral;

../RS-232/rx.vhd

4.3.1 Receiver Clock Divider

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

N

use IEEE.NUMERICSTD.ALL;

entity clk_sampler is

8 Port (reset : in STD.LOGIC;
clk :in STD_LOGIC;

10 full : out STD.LOGIC);
end clk_sampler;

architecture Behavioral of clk_sampler is

14 signal counter: unsigned (3 downto 0) :=70000";
begin
16
process (clk, reset)
18 begin
if reset = ’'1’ then
20 —reset for a half count.
counter <= 710007 ;
22 elsif rising_edge(clk) then
counter <= counter + 700017 ;
24 end if;

end process;

process (counter)

12

30

40

12

14

26

30

begin
—Full is 1/16 of the incoming frequency

if counter = ”71111” then
full <= ’17;

else
full <= ’07;

end if;

end process;
process (reset)
begin

end process;

end Behavioral;

../RS-232/clk_sampler.vhd

4.4 Clock Divider

— Selectable output frequency clock divider code.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity selectable_clock is
Port (clk : in std_logic;
sO : in std_-logic;
sl : in std_logic;
out_clk : out std_logic);
end selectable_clock;

—1If s1 and sO are both low, the output clock rate is

—1If s1 is low and sO is high, the output clock rate
—1If s1 is high and sO is low, the output clock rate
—1If s1 and sO are both high, the output clock rate
architecture Behavioral of selectable_clock is

begin
process (clk, sO, sl)
variable count : integer := 0;
begin
if clk = ’1’ and clk ’event then
count := count + 1;

— Start a process.
— Variable declaration.
— Rising edge detection.
— Code to create the 16 Hz clock.
if sO0 = 0’ and sl = ’0’ then
if count >= 3125000 then
— Taken off a 50MHz clock.

count := 0;
—— Reset count for next cycle.
end if;

if count >= 0 and count <= 1562500 then
out_clk <= ’17;

—— High portion of 16 HZ clock.

else

13

is
is
is

16 Hz.

1 Hz.
10 Hz.
160 KHz.

out_clk <= ’07;
38 — Low portion of 16 HZ clock.
end if;
40 end if;
— Code to create the 1 Hz clock.
42 if s0 = ’1’ and sl = 0’ then
if count >= 50000000 then
44 — Taken off a 50MHz clock.
count := 0;
46 —— Reset count for next cycle.
end if;
48 if count >= 0 and count <= 25000000 then
out_clk <= ’17;
50 — High portion of 1 HZ clock.
else
52 out_clk <= ’07;
—— Low portion of 1 HZ clock.
54 end if;
end if;
56 —— Code to create the 10 Hz clock.
if s0 = ’0’ and sl = ’1’ then
58 if count >= 5000000 then
— Taken off a 50MHz clock.
60 count := 0;
—— Reset count for next cycle.
62 end if;
if count >= 0 and count <= 2500000 then
64 out_clk <= ’17;
— High portion of 10 HZ clock.
66 else
out_clk <= ’07;
68 — Low portion of 10 HZ clock.
end if;
70 end if;
— Code to create the 160 Hz clock.
72 if s0 = ’1’ and sl = ’1’ then
if count >= 312500 then
74 — Taken off a 50MHz clock.
count := O0;
76 — Reset count for next cycle.
end if;
78 if count >= 0 and count <= 156250 then
out_clk <= ’17;
80 —— High portion of 160 Hz clock.
else
82 out_clk <= ’0’;
—— Low portion of 160 Hz clock.
84 end if;
end if;
86 end if;
end process;
ss| end Behavioral;

../RS-232/clk_divider.vhd

14

5 Implementation Constraints

The only constraints in this project were the desired baud rate and the avail-
able space on the FPGA. This project had neither the speed nor the size to
pose a serious implementation problem.

6 Engineering and Design Challenges

The most challenging section of this design was manipulating the 50MHz
onboard clock to produce two sets of three slower rates. The selectable clock
divider circuit provided in the lab manuals was modified to produce the required
rates.

The rest of the design was a straightforward series of FSMs.

7 Possibilities for Expansion

This asynchronous communication unit could be used in any 3.3 volt digital
circuit that required only a low speed link, as the data transfer rate is very low.
A faster version of the circuit is used to interconnect many hobbyist electronics
project, such as those using an Arduino.

If the design requirements were changed to include a need for error correc-
tion, hamming codes could be interwoven into the data bits to provide that
functionality. Unfortunately, these bits would slow data rate, and each frame
would either have to be extended or it would transmit fewer bits.

8 Alternative Techniques

What we have implemented in this lab is not true RS-232, as RS-232 has
voltages between -15 to -3 and 3 to 15 volts, not 0 to 3.3 as this transmitter
actually outputs. A diagram of an RS-232 transmission of the letter ‘K’ is below:

15

+15V

Space
LSB MSB

Start 1 1 0 1 0 0 1 0 Stop
+3V

Start | | b0 bl b2 ha hd b b6 b7 Stop
av
Idle Idle

Time
-
- Mark [2]

Instead, what we built in lab is an UART (Universal Asynchronous Receiver//-
Transmitter). The UART protocol has the high idle states and non-reversed
signaling at DC voltages. [3]

A limitation both RS-232 and the implemented transmitter is data rate. It
is very difficult to increase the data rate of these designs enough to make them
competitive with their successor interconnect protocol: USB. USB transmis-
sions happen on a pair of differential lines, where the signal is protected some-
what from noise. This and other improvements allow USB to transmit at 480
Mbit /s, significantly higher than is possible with RS-232. [1]

9 Conclusion

Much was learned in the construction of this unit. Integration and testing
of small modules was successfully performed. Working with pre-built modules
such as the LCD driver unit was also practiced. The unit works, and could be
useful as a component in low speed applications.

References

[1] Compaq, HP, Intel, Lucent, Microsoft, NEC and Philips, Universal Serial
Bus Specification Revison 2.0. USB Implementers Forum, 2000

[2] Samuel Tardieu, Rs232 Oscilloscope trace, Web, March, 2009

[3] Various, Universal Asynchronous Receiver/Transmitter Wikipedia, 2014

16

