Experiment No. 12
Successive Approximation A/D Converter
ECE 446

Peter CHINETTI

December 4, 2014

Instructor: Professor Shanechi

1 Introduction

When working with real world signals, it is useful to be able to sample voltage
levels. In this lab, the design of Analog to Digital Converters is explored and
implemented.

The translation is done with a DAC and a comparator. The sample voltage
is held to one end of the comparator, and the DAC is tied into the other side.
The DAC’s voltage is stepped up from 0 until the comparator transitions, at
which point the DAC voltage level is recorded as the output voltage level.

The algorithm used to determine the voltage has two problems: it is slow, in
the worst case taking as many cycles to complete as there are DAC voltage levels,
and it takes different amounts of time to encode different voltage levels. These
problems can be solved by changing how the voltage on the DAC is stepped.

2 Pre-Lab Questions
2.1

The input range is also 0 to 3.3 volts, as higher voltages can not be generated
to feed into the comparator.
2.2

The DAC output could be DC biased down 1.65 volts to move it’s 0 volt output
into the negative voltage range.

=

2.3
-1.65 to 1.65 volts.

24

If the voltage is increased to a value higher than 3.3 volts, but lower than the
Op-Amp maximum voltage, the ADC will read as if the input was 3.3 volts. If
the voltage is increased past the Op-amps maximum voltage, it will release the
magic smoke and go into an undefined state.

3 Procedure

a. Build resistor net and comparator circuit
b. Write VHDL to implement ADC

c. Assign pins to ports

d. Simulate

e. Program and Test

4 Equipment
e PC
e Spartan-3E development board
e Op-Amp
e Assorted resistors and diodes

e Breadboard

5 Code
5.1 Top-Level Module

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

5| entity adc is

Port (clk : in STD_LOGIC;
da_out, result_out : out STDLOGIC.VECTOR (3 downto 0);
done : out STD_LOGIC;
start_in : in STD_LOGIC;
comp : in STD_LOGIC);

end adc;

architecture Behavioral of adc is
component Counter is
Port (clk_in, en in STD_LOGIC;

o : out STD_LOGIC.VECTOR(3

tc out STD_LOGIC := ’0’;
reset in STD_LOGIC;
clk_out out STD_LOGIC) ;

end component ;

component debounce is

Port (input in std_logic;
clk_in in std_logic;
output out std_-logic);

end component;

signal r, cnt_clk, TC, c_en, start
signal result STD_LOGIC_VECTOR (3
type state is (IDLE, COUNT);
signal f, p state;

begin

da_out <= result;
result_out <= result;

cnt_0 Counter
port map(
clk_in => clk,
en => c_en,
o => result ,
tc => TC,
reset = r,
clk_out => cnt_clk);

deb_0 debounce
port map(
input => start_in ,
clk_in => clk,
output => start);

process (p, start, comp, cnt_clk, TC)
begin
if rising_edge(cnt_clk) then
p <= f;
end if;
case p is
when IDLE =>
if start = ’1’ then
r <= 17
f <= COUNT};
c.en <= ’'17;
done <= 07
else
r <= ’'0’;

downto 0) :=70000";

STD_LOGIC;
downto 0);

f <= IDLE;
69 c_.en <= '07;
done <= ’17;
71 end if;
when COUNT =>
73 if comp = ’1’ or TC = ’1’ then
done <= ’'17;
75 f <= IDLE;
c_en <= ’'0’;
77 else
f <= count;
79 end if;
end case;
81
end process;
83
end Behavioral;

adc.vhd

5.2 Counter Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERICSTD.ALL;

5| entity Counter is
Port (clk_.in, en_in : in STD_LOGIC;

7 o, result : out STDLOGIC.VECTOR(3 downto 0) :="0000";
tc : out STD_LOGIC := ’'07;
9 reset : in STDLOGIC := ’0’;

done : out STD_LOGIC) ;
11| end Counter;

13 architecture Behavioral of Counter is
signal counter: unsigned (3 downto 0) :=70000";
15 signal cnt_clk, clk_.i, en: STD_LOGIC;

7 component selectable_clock is
Port (clk : in std_logic;

19 sO : in std-logic;

sl : in std_logic;

21 out_clk : out std_logic);
end component;

component debounce is

25 Port (input : in std-logic;
clk : in std_-logic;

27 output : out std_logic);
end component ;

20| begin

31 done <= not en.in;

clk_div : selectable_clock

port map(

35 clk => clk_in ,

sO = 17,

37 sl = 17,

out_clk => clk_i);

deb : debounce

11 port map(

input => reset ,
43 clk => clk_in ,
output => en);

— cnt_clk <= clk_.i and en;

o <= std_logic_vector (counter);

19 result <= std_logic_vector (counter);
51 process (clk_i)
begin

53 if rising-edge(clk_i) then

if reset = ’1’ then
55 counter <= "00007;

elsif en_in = 1’ and counter <= 711117 then
57 counter <= counter + 700017

end if;
59 end if;

end process;

process (counter)

63 begin

if counter = ”71111” then
65 te <= 17,

else
67 tc <= ’0;

end if;

69 end process;
end Behavioral;

Counter.vhd

5.3 Debouncer Module

| library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

5| entity debounce is

Port (input : in std-logic;
7 clk : in std_logic;
output : out std-logic);
o| end debounce;

11| architecture Behavioral of debounce is
begin
13 process (clk, input) — Start a process.

23

10

14

20

22

30

w
I}

variable count : integer := 0; — Variable declaration.
begin

if clk = ’1’ and clk ’event then — Rising edge detection.
if input = 1’ then — Input is high at clock.
count := count 4+ 1; — Increment count.
else — Input is low at clock.
count := 0; — Reset count.
end if;
if count > 1000000 then — Input high long enough to
— output.
output <= ’1’; — Output high.
else — Input not high long enough.
output <= ’0’; — Output low.
end if;
end if;

end process;
end Behavioral;

debounce.vhd

5.4 Clock Divider Module

—— Selectable output frequency clock divider code.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity selectable_clock is
Port (clk : in std_-logic;
sO : in std_-logic;
sl : in std-logic;
out_clk : out std_-logic);
end selectable_clock;

2|—1If s1 and sO are both low, the output clock rate is 1/10 Hz.

—1If sl is low and sO is high, the output clock rate is 1 Hz.
—If s1 is high and sO is low, the output clock rate is 10 Hz.
—1If s1 and sO are both high, the output clock rate is 1 KHz.

architecture Behavioral of selectable_clock is
begin
process (clk, sO, sl)
variable count : integer := O0;
begin
if clk = ’1’ and clk’event then
count := count + 1;

— Start a process.
— Variable declaration.
— Rising edge detection.
— Code to create the 1/10 Hz clock.
if sO0 = 0’ and sl = ’0’ then
if count >= 500000000 then
— Taken off a 50MHz clock.

count := O0;
—— Reset count for next cycle.
end if;

if count >= 0 and count <= 250000000 then
34 out_clk <= ’17;
— High portion of 1/10 HZ clock.
36 else
out_clk <= ’0’;
38 — Low portion of 1/10 HZ clock.
end if;
40 end if;
— Code to create the 1 Hz clock.
42 if sO0 = 1’ and sl = ’0’ then
if count >= 50000000 then
44 — Taken off a 50MHz clock.
count := 0;
46 —— Reset count for next cycle.
end if;
48 if count >= 0 and count <= 25000000 then
out_clk <= ’17;
50 — High portion of 1 HZ clock.
else
52 out_clk <= ’0’;
— Low portion of 1 HZ clock.
54 end if;
end if;
56 — Code to create the 10 Hz clock.
if sO = 0’ and sl = ’1’ then
58 if count >= 5000000 then
— Taken off a 50MHz clock.
60 count := 0;
— Reset count for next cycle.
62 end if;
if count >= 0 and count <= 2500000 then
64 out_clk <= ’17;
—— High portion of 10 HZ clock.
66 else
out_clk <= ’0’;
68 — Low portion of 10 HZ clock.
end if;
70 end if;
— Code to create the 1 KHz clock.
72 if s0 = ’1’ and sl = ’1’ then
if count >= 50000 then
74 — Taken off a 50MHz clock.
count := 0;
76 —— Reset count for next cycle.
end if;
78 if count >= 0 and count <= 25000 then
out_clk <= ’17;
80 — High portion of 1 KHz clock.
else
82 out_clk <= ’07;
—— Low portion of 1 KHz clock.
84 end if;
end if;
86 end if;
end process;
ss| end Behavioral;

clk_div.vhd

6 Conclusions

The purpose of this lab was achieved. An ADC was built and tested. Operation
was verified through simulation and physical implementation.

