Experiment No. 2
Four-Bit Ripple-Carry Adder/Subtractor
ECE 446

Peter CHINETTI

September 16, 2014

Date Performed: September 9, 2014
Instructor: Professor Shanechi

1 Introduction

Ripple adders are a type of adder circuit that uses chained single bit adders to
create a wider adder unit. They were chosen for this lab to demonstrate how
VHDL allows for modular circuit construction. This modular construction lays
at the core of why hardware programming languages have become so popular:
they allow design reuse.

2 Background

2.1 Karnaugh Maps

2.1.1 Sum
A B
o0 01 11 10
Cm 0] 0 1 0 1
1] 1 1
2.1.2 Cou

2.2 Minimized Equations

Sum =A@ B & C;,, ® op_sel

Cout = CinA(B @ op_sel)+C;, A(Bdop_sel)+Cin, A(BDop_sel) +Cin A(B @ op_sel)+

A(B @ op_sel) + Cin A(B @ op_sel)

3 Procedure

a. Generate minimized equations for adder.
b. Write VHDL to implement logic.

c. Assign pins to ports

d. Simulate

e. Program and Test

4 Equipment
e PC

e Spartan-3E development board

5 Code
5.1 Top-level Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
Port (A : in STDLOGIC.VECTOR (3 downto 0);
B : in STDLOGIC.VECTOR (3 downto 0);
Co : out STD_LOGIC;
S : out STD.LOGIC.VECTOR (3 downto 0);
OP_sel : in STD_LOGIC);
end Adder;

architecture Behavioral of Adder is
signal ¢-0, c-1, c-2 : STD_LOGIC;
component adder_block
Port(a, b, ci, op-sel : in STD_LOGIC;
s, co : out STD.LOGIC) ;

end component ;
begin

adder_0: adder_block
port map (
a => A(O))
b => B(0),
op-sel = OP_sel,
ci = OP_sel,
co = ¢c.0,
s => S(0)

)7

adder_1: adder_block
port map (

a => A(1),

b = B(1),

op-sel => OP._sel,
ci = c.0,

co => c_1,

s => S(1)

)

adder_2: adder_block
port map (

a => A(2),

b = B(2),

op-sel => OP_sel,
ci = c.1,

co => c.2,

s => S(2)

)

adder_3: adder_block
port map (

a => A(3),

b = B(3),

op-sel => OP_sel,
ci = c.2,

co => Co,

s => S(3)

)

end Behavioral;

Adder.vhd

5.2 1 Bit Adder Module

10

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity adder is

Port (A : in STDLOGIC;
B : in STD_LOGIC;
Cin : in STD_LOGIC;
sum : in STD_LOGIC;
Cout : in STD_LOGIC;
in STD_LOGIC) ;

op-sel
end adder;

14

18

19

architecture add_arch of adder is
begin

sum <= (Cin and (not A) and (not (B xor op-sel))) or ((not Cin)
and (not A) and (B xor op-sel)) or (Cin and A and (B xor op-sel
)) or ((not Cin) and A and (not (B xor op-sel)));
Cout <= (A and (B xor op-sel)) or (Cin and A) or (Cin and (B xor
op-sel));
end add_arch;

short.vhd

5.3 Test Module

LIBRARY ieee;
USE ieee.std-logic_-1164 .ALL;

ENTITY small_adder IS
END small_adder;

ARCHITECTURE behavior OF small_adder IS
— Component Declaration for the Unit Under Test (UUT)

COMPONENT adder_block
PORT(
a : IN std_logic;
b : IN std_logic;
ci : IN std-logic;
: OUT std_logic;
co : OUT std_logic;
op-sel : IN std_logic
)
END COMPONENT

—Inputs
signal a : std_-logic := ’07;
signal b : std_logic := ’07;
signal c¢i : std_logic := ’0’;
signal op_sel : std_logic := ’07;
—Outputs
signal s : std_logic;
signal co : std_-logic;

5| BEGIN

— Instantiate the Unit Under Test (UUT)
uut: adder_block PORT MAP (

a => a,
b = b,
ci = ci,

69

81

91

s => s,
co => co,
op-sel => op_sel

))

— Stimulus process

stim_proc: process

begin
— hold reset state for 100 ns.
wait for 10 ns;

a <= "17;

wait for 10 ns;

a<= 07
b<: 71?;

wait for 10 ns;
a <= 1 7;
wait for 10 ns;

a <= 70»;
b <= 707;

wait for 10 ns;

op-sel <= ’17;
ci <= 17

wait for 10 ns;
a <: 71 7;
wait for 10 ns;

a <= 70);
b <= 717;

wait for 10 ns;
a <= 1 7;

wait ;
end process;

END;

test.vhd

6 Conclusions

The purpose of this lab was achieved. A ripple adder was built and tested.
Additionally, the module functions of VHDL were demonstrated through the
division of the single bit adder and full module.

