
ECE 449, Fall 2014
Project 2: Syntactic Analysis

Initial Release Due: 10/03 (Fri.), by the end of the day
Final Release Due: 10/10 (Fri.), by the end of the day

1 Overview

Complex digital systems are usually built in a hierarchical manner by creating compo-
nents and interconnecting them together using wires. Hardware description languages
like Verilog, VHDL, and EasyVL in particular for this course, allow to describe such
hierarchical and structural relationships between components and wires in a textual
form such that a system prototype can be quickly created by reusing existing designs.
A key feature of such languages is that one can define a blueprint of the same kind of
components, called module, that can be used to construct those components in other
modules. For example, you may define a module for 1-bit 16-to-1 mux’es such that any
time you need a 1-bit 16-to-1 mux, e.g. for a register file, you can construct it directly
from the blueprint without elaborating the many gates inside.

Clearly, when you define the blueprint, i.e. the module, it is necessary to define its
inputs and outputs, called its ports, as well as how the inputs and outputs are related.
For the structural relationship that we consider in this course, we define a module by
describing the ports that could either be inputs or outputs, the components that could
either be primitive logic gates or be constructed from other modules, and the wires that
connect them together. Each wire could be a bus that allows to bundle multiple bits
of information together. Moreover, as both components and primitive gates may have
multiple inputs and outputs, we define pins to be where the wires are connected to a
single component or a primitive gate. For example, a 2-input AND gate has 3 pins,
and a 2-to-1 mux has 4 pins.

To simulate a system design, a simulator will need to identify the top module from
the textual description. The top module is a module without any port, i.e. it has no
input and output. It usually contains a component constructed from the module for the
system itself, and other components and wires providing stimuli to drive the simulation.

We will not handle hierarchical designs until for the bonus project. Therefore, for
Project 2, 3, and 4, we would assume all components to be primitive gates and there is
a single module, which is also the top module in our designs. Nevertheless, we still need
to study how to model the structural relationship and how to perform the simulation,

1



ECE 449 – Project 2 Specification, Fall 2014 2

and in Project 2, we will perform syntactic analysis, i.e. to study the grammar of the
EasyVL language that in particular defines wires, components, and pins.

2 Tokens and Statements

Once the the EasyVL file is converted to a sequence of tokens, syntactic analysis will
group tokens into statements and extract components and interconnects leveraging the
semantics of the statements.

In the EasyVL language, the sequence of tokens is broken down into a sequence of
statements, where each statement should be among the following four types.

• MODULE: the sequence starts with a NAME token module and ends with a
SINGLE token ;.

• ENDMODULE: the sequence contains one NAME token endmodule.

• WIRE: the sequence starts with a NAME token wire and ends with a SINGLE
token ;.

• COMPONENT: the sequence starts with a NAME token which is not among
module, wire, or endmodule, and ends with a SINGLE token ;.

Note that except the bonus project where hierarchical designs are support, the EasyVL
file should contain exactly one module (the top module). Therefore, the first statement
must be MODULE, the last statement must be ENDMODULE, and any statement
in between must be either WIRE or COMPONENT.

For example, consider test.evl shown below.

// a comment

module top;

wire s0, s1, clk;

evl_clock(clk);

evl_dff(s0, s1, clk);

not(s1, s0);

endmodule

There are 6 statements. The first one is MODULE. The second one is WIRE. Then
there are three COMPONENT statements. The last one is ENDMODULE.



ECE 449 – Project 2 Specification, Fall 2014 3

Figure 1: FSM for WIRE statements

3 Syntactic Analysis

While the definitions in the previous section can be used to construct statements from
tokens, we need to further specify the internal structure of the statements, i.e. their
syntax, in order to understand their semantics.

Obviously a ENDMODULE statement has no internal structure. A MODULE
statement, on the other hand, has a very straightforward structure for the top module:
there must be three tokens – module, a NAME token given the type of the module,
and ;. However, both the WIRE and COMPONENT statements are much more
complicated because the former can define arbitrary number of wires and the latter can
have many pins, not to mention that wires and pins could be buses or part of buses.

Therefore, we need a model to specify these two types of statements. Since there
is no recursive structure within the syntax, we can use FSMs, i.e. the same model for
synchronous circuits, to model them. This is not quite a coincidence since FSM is one
of the most practical computation models.

3.1 WIRE Statements

The FSM for WIRE statements is shown in Fig. 1. There are 10 states and 11 transi-
tions in this FSM. To extract wires defined in a WIRE statement, you should always
start from the INIT state and consume one token per each state transition. Any token
that would not match any out-going transition for the current state would be a viola-
tion of the syntax. If all the tokens are consumed at the same time the state reaches



ECE 449 – Project 2 Specification, Fall 2014 4

DONE, the statement is a valid one. A WIRE statement may have an optional part
specifying that the wires should be buses. This optional part is captured by the 5 states
starting at BUS. For simplicity, EasyVL requires that every bus must be defined in the
form [width-1:0] and that if the optional part is presented, the bus width must be at
least 2. After this optional part, the , separated list of wire names are captured by the
two states WIRES and WIRE NAME. Each time a new wire name is identified, we
can store the name and the width in some data structure.

3.2 COMPONENT statements

Similarly, the FSM for COMPONENT statements is shown in Fig. 2. The component
name is optional and should be empty("") if not specified. Within the (), there are
multiple pins separated by , representing the connections of wires to the component.
When the wire is a bus, a pin may connect to a range of bits within the bus. The range
is optional and is specified by the most-significant-bit (msb) and the least-significant-bit
(lsb) within the [] following the pin name. If both msb and lsb are specified, they are
separated by :; otherwise the msb is specified such that the pin connects to only one
bit within the bus.

3.3 Suggestions

Your initial release should at least support the syntax of the MODULE and END-
MODULE statements since they are necessary to identify the top module in the test
cases. It is recommended to support the WIRE statement for multiple wires so that
you will understand how the FSM model works. It is up to you to support the bus in
the WIRE statement or not.

Support for COMPONENT statements should be added last once your code works
for all cases of the WIRE statement. Code refactoring may be necessary. Most likely
it is a good idea to implement such support only for the final release.

4 Required Program Output

To verify the correctness of syntactic analysis, your program should store the syntax
into an output file. Similar to Project 1, the output file name is the name of the
EasyVL file concatenated with .syntax, e.g. the output file for test.evl should be
test.evl.syntax .

The output file should have the following format with the items between [] being
optional.

module module_type

wires M_number_of_wires

wire wire_1_name wire_1_width

wire wire_2_name wire_2_width



ECE 449 – Project 2 Specification, Fall 2014 5

Figure 2: FSM for COMPONENT statements



ECE 449 – Project 2 Specification, Fall 2014 6

...

wire wire_M_name wire_M_width

components N_number_of_components

component component_1_type[ component_1_name] L1_number_of_pins

pin pin_1_of_component_1_name[ pin_1_msb][ pin_1_lsb]

pin pin_2_of_component_1_name[ pin_2_msb][ pin_2_lsb]

...

pin pin_L1_of_component_1_name pin_L1_msb pin_L1_lsb

component component_2_type[ component_2_name] L2_number_of_pins

pin pin_1_of_component_2_name[ pin_1_msb][ pin_1_lsb]

...

pin pin_L2_of_component_2_name[ pin_L2_msb][ pin_L2_lsb]

...

component component_N_type[ component_N_name] LN_number_of_pins

pin pin_1_of_component_N_name[ pin_1_msb][ pin_1_lsb]

...

pin pin_LN_of_component_N_name[ pin_LN_msb][ pin_LN_lsb]

For example, the content of test.evl.syntax should be.

module top

wires 3

wire s0 1

wire s1 1

wire clk 1

components 3

component evl_clock 1

pin clk

component evl_dff 3

pin s0

pin s1

pin clk

component not 2

pin s1

pin s0

The format is summarized as follows.

• Similar to Project 1, the output file is organized into lines and the strings on each
line are separated by spaces.

• The first line describes the module and its type.

• Then, after a line that shows the number of wires, the wires are written to the
file following the order they appear in the EasyVL file.



ECE 449 – Project 2 Specification, Fall 2014 7

– Each wire occupies one line showing its name and width.

• Finally, after a line that shows the number of components, the components are
written to the file following the order they appear in the EasyVL file.

– Each component may occupy multiple lines depending on the number of the
pins it contains.

– The first line shows its type, its name, and the number of its pins. The name
should be omitted if it is empty.

– Then, each pin occupies an additional line showing its name, its msb, and
its lsb. The pins should follow the order they appear within the (). The
msb should be omitted if it is -1 and the lsb should also be omitted if it is
-1.

• The indentations are added to the beginning of each line to make the golden
output more readable. It is up to you to implement this feature or not. However,
no extra space should be introduced in the middle of the line.

As a reminder, it is always a good idea to run the golden simulator in order to
understand the above format.


